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The Paleozoic carbonate rocks of the southeastern Canadian 
Cordillera contain a variety of deposit types, including 
Mississippi Valley-type, magnesite, and REE-F-Ba. These 
deposits are hosted in weakly deformed, and 
metamorphosed Paleozoic platform carbonate rocks of the 
Rocky Mountains. They are found at different stratigraphic 
levels, however, most of them are hosted in dolostones of the 
middle Cambrian Cathedral Formation, upper Cambrian 
Jubilee Formation and Upper Devonian Palliser Formation. 

Abstract

The deposits occur along major structurally controlled facies 
transitions between the shallow-water carbonate platforms 
and deeper water basin rocks of the Paleozoic continental 
margin. The location and geometry of these deposits reflect 
the juxtaposition of structures (e.g., deep-seated faults at 
platform to deep-water basin transition) and rock types (i.e., 
permeable and reactive stratigraphic units) favorable to 
mineralization. This confluence of favorable conditions 
resulted from episodic rifting and mineralization along the 
Paleozoic margin during the middle to Late Cambrian and 
Late Devonian to Middle Carboniferous.

This poster reviews geology, petrography, stable (C, O, S) and 
radiogenic (Pb, Sr) isotopes, and geochronology of selected 
carbonate-hosted deposits. Petrography shows dissolution 
and replacement of the original carbonate by fine-grained 
“dolomite” followed by different stages of coarser dolomite 
replacement and cavity fracture fillings (e.g., saccharoidal, 
sparry and saddle dolomites) accompanied by sulphide 
deposition, mainly sphalerite, galena and pyrite. 
Geochemical signatures for each mineralization type show a 
pattern of dolomitizing and mineralizing fluids interacting with 
barren host rocks. A more detailed account of the materials 
presented here can be found in [6].

Geology
The carbonate-hosted deposits discussed in this poster are in the southern Rocky Mountain Foreland Belt (RMFB; Figs. 1, 2), which is a thin-skinned thrust-
and-fold belt that developed along a basal-detachment fault system initiated by Late Jurassic to Paleogene eastward accretion of allochthonous terranes [7, 8]. 
The strata within the RMFB consist of late Neoproterozoic to Mid-Jurassic imbricated and folded predominantly sedimentary rocks deposited on or adjacent to 
the stable craton of the Cordilleran margin of ancestral North America. 
The strata include: 

Ÿ Late Jurassic to early Cenozoic marine to non-marine siliclastic rocks eroded from the uplifting Omineca and Foreland belts.

Several carbonate-hosted deposits occur along the platform to deep-water basin transition. For example, east of the projected western margin of the Kicking 
Horse Rim and the Cathedral Escarpment, middle to upper Cambrian, Ordovician, and Upper Devonian shallow-water platform carbonate rocks host 
Mississippi Valley-type (MVT; e.g. Monarch and Kicking Horse, Boivin−Munroe−Alpine, Shag, Hawk Creek, and Oldman), magnesite (e.g. Mount Brussilof), 
and rare-earth element (REE)–F-Ba (e.g. Rock Canyon Creek) deposits (Figs. 2, 3; Table 1). West of the Kicking Horse Rim and Cathedral Escarpment, deep-
water basin rocks of the Chancellor Group include the Burgess Shale Formation, and lesser accumulations of limestone and lenses of MgO- and Ba-rich 
chloritic rocks.

Ÿ Cambrian to Jurassic platform to deep-water basin transition sequences deposited on and near the ancient continental margin of ancestral North America.
The Kicking Horse Rim, which corresponds approximately to the projection of the Cathedral escarpment and other escarpments, is an important Paleozoic
fault-controlled, paleogeographic high at the platform to basin facies transition.

Ÿ Neoproterozoic to lower Cambrian siliclastic rocks of the Windermere Supergroup deposited during intracontinental rifting.

JuneauJuneauJuneau

InuvikInuvikInuvik

CalgaryCalgaryCalgary

VictoriaVictoriaVictoria

EdmontonEdmontonEdmonton

VancouverVancouverVancouver

WhitehorseWhitehorseWhitehorse

Yellowknife

Prince RupertPrince RupertPrince Rupert

NAb

YT

YT

NAp

NAp

AA

CA

ST
SMSM

SMSM

SMSM

AX

NAb

KS

QN

AA

YT

YA

CG

NAp

NAb

AG

WR

CG

AX

NAb

AG

CG

NAc

ST

WR

WR

AX

NAp

QNQNQN

OKOK

QN

NAc

CA

YT

CC

CC

NAb

CA

YT

SMSM

SMSMBRBR
CDCDCD

PR

CR

PR

CR

108°W

116°W

116°W

124°W

124°W

132°W

132°W140°W

70°N

66°N

66°N

62°N

62°N

58°N

58°N

56°N

54°N

54°N

50°N

50°N

0 100 200 300

km

C
oast

plutonic

complex

Alaska

A
la

sk
a

Yukon
NWT

BC

A
lb

e
rta

USA

Pacific
Ocean

Chugach

Cache Creek

Wrangellia

Alexander

Yukon-Tanana

Yakutat

Stikinia

Quesnellia

Coast complex

North America - 
platform

Methow

Kootenay

Cadwallader

Chilliwack

Crescent

Bridge River

Harrison Lake

Slide Mountain

AX

WR

CG

YA

YT

ST

OkanaganOK

QN

HA

CD

CK

MT

PR

CR

BR

SM

CC

KS

NAb

NAp

North America - 
craton & cover

NAc

CassiarCA

Outboard

Insular

Intermontane

Angayucham, 
Tozitna

Arctic AlaskaAA

AG

N Alaska

Ancestral 
North America

TERRANES

e
a
ste

rn
lim

it

of

C
ordilleran

deformation

K
ootenay A

rc

K
ootenay A

rc

K
ootenay A

rc

Rocky M
tns

Rocky M
tns

Rocky M
tns

Carbonate-hosted sulphide 
Zn-Pb (±Ba, ±Ag) deposits

Clastic-hosted sulphides (~SEDEX)

Carbonate-hosted magnesite

Deposit types

Figure 1. Terranes of the Canadian Cordillera [1] and location 
of sediment-hosted deposits in rocks of the Ancestral North 
America margin. 
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The Paleozoic carbonate rocks of the southeastern Canadian Cordillera contain 
a variety of deposit types, including MVT, REE-F-Ba, and sparry magnesite. The 
deposits are at different stratigraphic levels, however, most of them are hosted in 
dolostones of the middle Cambrian Cathedral, upper Cambrian Jubilee, and 
Upper Devonian Palliser formations (Fig. 3). Most of them occur along major 
structurally controlled facies transitions between the shallow-water carbonate 
platforms and deep-water basin rocks near the shelf-slope break of the 
Paleozoic continental margin. The location and geometry of these deposits 
reflect the association of structures (e.g. deep-seated faults at platform to deep-
water basin transition) and rock types (i.e. permeable and reactive stratigraphic 
units) favorable to mineralization.

Mississippi Valley-type (MVT) deposits consist of stratabound lenses, layers, 
pods, breccias, and veins of sulphides preferentially hosted in dolostone of the 
middle Cambrian Cathedral and Upper Devonian Palliser formations.

Examples: Monarch and Kicking Horse, Munroe, Shag, and Boivin (Figs. 4, 5, 6, 
7, 8).
Orebodies have single or multiple lenses in dolomitized and/or siliceous 
carbonate rocks. They are at facies transitions between shallow-water 
carbonate platform and deeper basin rocks and major basement-controlled 
structures. 
Sulphides: Pyrite, sphalerite, galena, and minor chalcopyrite.
Gangue: Dolomite, fluorite, calcite, quartz, and minor barite.

Magnesite deposits are preferentially hosted in middle Cambrian shallow 
marine carbonate rocks of the Cathedral Formation. Magnesite textures vary 
widely.

Mineralization: Magnesite.

Minor to trace minerals: mica, Mg-rich chlorite, talc, palygorskite/attapulgite, 
boulangerite, chalcocite, huntite, brucite, fersmite, Nb-bearing rutile, goyazite, 
and euclase.

Orebody is steeply dipping and coincides with a crackle breccia in carbonate 
rocks.
Mineralization (Fig. 10): REE-F-Ba in REE-bearing fluorocarbonates 
[bastnaesite-(Ce), parisite-(Ce), synchysite-(Ce)] and a mixture of REE 
phosphates including monazite-(Ce).
Gangue: Dolomite, pyrite, barite, calcite, quartz, and k-feldspar.

Main gangue minerals: Dolomite, calcite, pyrite, quartz, and clay.

Example: Mount Brussilof; producing mine (Fig. 9).
Orebodies are stratbound layers, lenses, pods and irregular masses of white to 
grey magnesite hosted in fine-grained dolostone.

Rock Canyon Creek REE-F-Ba deposit is hosted by dolostone, dolomitic 
limestone, and carbonate breccia of the Middle Devonian Cedared and Burnais 
formations (known to contain silty calcareous gypsum).
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Deposit 
Deposit 

Classification
Commodity Formation / Unit

Age of Host 

Rocks
Lithology Mineralogy

Mount 

Brussilof
Magnesite Magnesite Cathedral Fm

Middle 

Cambrian
Magnesite

Magnesite. Main gangue minerals: dolomite, calcite, 

pyrite, quartz, and clay. 

Minor to trace minerals: mica, Mg-rich chlorite, talc, 

palygorskite/attapulgite, boulangerite, chalcocite, 

huntite, brucite, fersmite, Nb-bearing rutile, goyazite, 

and euclase.

Monarch MVT
Zn, Pb (±Ag, 

±Cd)
Cathedral Fm

Middle 

Cambrian

Massive to thin-bedded 

brecciated dolostone

Galena, sphalerite and pyrite in gangue of dolomite and 

calcite. Minor chalcopyrite, barite, quartz and native 

silver.

Kicking 

Horse
MVT

Zn, Pb (±Ag, 

±Cd)
Cathedral Fm

Middle 

Cambrian

Massive to thin-bedded 

brecciated dolostone

Galena, sphalerite and pyrite (traces of chalcopyrite) in 

gangue of dolomite and calcite.

Shag MVT Zn, Pb (±Ag)

Stephen, Eldon 

and Waterfowl 

fms 

Middle to 

Upper 

Cambrian 

Dolostone
Sphalerite, galena, minor pyrite in a gangue of dolomite, 

quartz, and minor calcite.

Munroe MVT Zn
Palliser Fm; lower 

(Morro) mb

Upper 

Devonian 

Dolostone with fenestral 

porosity (filled by white 

sparry dolomite), zebra-like 

texture, lesser breccia

Sphalerite, minor pyrite and galena in a gangue of 

dolomite; calcite and dolomite fill vugs.

Alpine MVT Zn
Palliser Fm; lower 

(Morro) mb

Upper 

Devonian 
Dolostone

Sphalerite, minor pyrite and galena in a gangue of 

dolomite; calcite and dolomite fill vugs.

Boivin MVT Zn
Palliser Fm; lower 

(Morro) mb

Upper 

Devonian 
Dolostone

Sphalerite, minor pyrite and galena in a gangue of 

dolomite; calcite and dolomite fill vugs.

Hawk 

Creek
MVT

Zn, Pb (±Ag, 

±Au)
McKay Group

Upper 

Cambrian-

Ordovician

Argillaceous limestone, 

argillite, dolomitic 

limestone.

Sphalerite, pyrite, galena (silver reported) in a gangue of 

calcite and dolomite.

Rock 

Canyon 

Creek

REE-F-Ba REE-F-Ba
Cedared and 

Burnais fms

Middle 

Devonian

Dolostone, dolomitic 

limestone, carbonate 

breccia and laminated silty, 

calcareous gypsum.

Dolomite, fluorite, barite, pyrite, quartz, K-feldspar, 

calcite, REE-fluorocarbonates and REE-phosphates.

Oldman MVT Pb, Zn, Ag Upper Palliser Fm
Upper 

Devonian 

Dolostone, dolomitic 

limestone, limestone.

Galena, pyrite, and sphalerite in a gangue of calcite. 

Minor: dolomite, ankerite.

Table 1. Principal characteristics of carbonate-hosted deposits of southeastern British Columbia invesitaged during this study
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18 87 86Figure 13. δ O  versus Sr/ Sr values for various carbonates VPDB

associated with deposits of the southern Canadian Rocky 
Mountains. Middle Cambrian and Devonian marine carbonate 
values are from [12]. Maximum Sr isotope ratio of basin shale 

87 86(MASIRBAS) is from [17]. Sr/ Sr values of MVT and magnesite 
hydrothermal dolomites are similar or higher than their host 
dolostone. However, Rock Canyon Creek dolomites have lower 
87 86Sr/ Sr values than those from MVT and magnesite deposits.
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13 18Figure 11. δ C  versus δ O  of host dolostone and VPDB VPDB

hydrothermal dolomites associated with MVT and magnesite 
deposits. Hydrothermal dolomites associated with 

18mineralization have lower δ O  values than their VPDB

respective dolostone host rocks. Our data compare well with 
the hydrothermal dolomites of [9], [10] and [11]. The 
generalized trends for burial, hydrothermal and meteoric 
fluids of [13] are illustrated by arrows.
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Mountains, Mackenzie Mountains, and Western Canada Sedimentary Basin (WCSB). The data form 3 clusters, each defined by specific deposits. Cluster 1, 
the least radiogenic group, is from the Monarch, Kicking Horse and Munroe deposits. Cluster 2 consists exclusively of samples from Shag deposits. Cluster 
3, the most radiogenic group, consists of Hawk Creek, Mount Brussilof, Oldman, and Munroe deposits, which plot within the “Cordilleran-carbonate trend” 
defined by carbonate-hosted Zn-Pb deposits and occurrences of the northern Rocky Mountains, Mackenzie platform, and WCSB (cf. [21]). The dashed lines 
in A) and B) represent the trendline for all the data within the “Cordilleran carbonate trend”. They intersect clusters 1 and 2, and a cluster of unradiogenic lead 
data from the Lead Mountain deposit, a vein- and fracture-controlled carbonate-hosted sulphide-barite deposits in the western Foreland Belt of the Rocky 
Mountains. This suggests that Pb signature of clusters 1, 2, and 3 represents mixtures of variably radiogenic end members.
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Figure 2. Regional geological map of southeastern Canadian Cordillera showing locations of 
the sediment-hosted deposits. The projection of the Cathedral escarpment (red dashed-line)  
corresponds approximately to the western margin location of the Kicking Horse Rim, a 
paleogeographic high that was initiated in the early middle Cambrian and persisted into the 
Ordovician [2,3]. Both features mark the change from shallow-water carbonate rocks to the 
east and continental slope lithofacies to the west during the early Paleozoic. Modified from [4]. 
Terranes from [5].
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Figure 3. Generalized stratigraphy of the Purcell anticlinorium and the Rocky Mountain 
Foreland Belt with locations of studied deposits indicated by stars. Modified from [4]. 
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Figure 4. Kicking Horse MVT deposit. A) Aggregates of sphalerite (Sph)+pyrite 
(Py) in white sparry dolomite (Do) cement. B) Colloform sphalerite exhibiting 
colour zonation adjacent to white sparry dolomite; PPL = Plane-Polarized Light. 
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Figure 5. Shag MVT deposit. A) Sample of Red Bed showing displays alternating 
bands of white dolomite and quartz and darker dolostone rich in red sphalerite 
(Sph). B) The C-4 showing with intense replacement by granular sphalerite in a 
matrix of quartz and dolomite, with minor pyrite and galena (black); PPL.
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Figure 7. Hawk Creek MVT deposit. A) Massive layered/banded sphalerite and 
less pyrite, galena replacing argillites and argillaceous dolostone of the middle 
Cambrian McKay Group. B) Sphalerite 1 (Sph 1) surrounded by fine crystalline 
dolomite (Dol 1) and coarse-grained saddle dolomite (Dol 2); PPL.
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Figure 8. Oldman MVT deposit. A) Sphalerite (Sph) interstitial to dolomite (Dol); 
PPL. B) Colloform sphalerite (Sph) fills open spaces. Smaller grains are 
interstitial to or replace the dolomite (Host Do); PPL.
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Figure 6. Munroe MVT deposit. A) Zebra texture created by the alternating bands of 
dark grey dolostone (Host Do) replaced by saccharoidal dolomite (Sacch Dol) rich in 
sphalerite (Sph), and white sparry dolomite lenses. B) Nonplanar or planar-e to 
planar-s dolomite (Dol), coarser-grained saccharoidal dolomite (Sacch Dol) and 
intergranular sphalerite (Sph); PPL.
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Figure 9. Mount Brussilof magnesite deposit (Baymag mine). A) Coarse-
grained grey magnesite ore. B) Fersmite (Frs) crystal in sparry dolomite 
(Sparry Dol); PPL.
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Figure 10. Rock Canyon Creek REE-F-Ba deposit. A) Large euhedral 
crystals of barite in purple fluorite vein cutting altered dolostone (DDH-09-01 
at 38.7 m). B) Backscatter electron image of mineral assemblage from the 
REE-F-Ba mineralization.
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13 18Figure 12. Plot of δ C  versus δ O . Values for dolomites VPDB VPDB

associated with MVT, magnesite, and REE-F-Ba deposits are lower 
than respective host carbonate rocks. Dolomite associated with Rock 

13Canyon Creek (RCC) REE-F-Ba mineralization has δ C  versus VPDB
18δ O  values similar to dolomite associated with MVT and VPDB

magnesite deposits; these values plot outside the fields of southern 
British Columbia carbonatite (yellow) and primary igneous 
carbonatites (defined by [14]).

Figure 17. Homogenization temperature (Th) versus salinity 
(wt. % equiv. NaCl). The data indicate broad ranges of 
temperature (<80–200°C) and salinity (0.9–28 wt.%), even in 
some cases for single settings (e.g., Monarch 0.9–20.2 wt. %; 
Mastodon 3.1–23.1 wt. %). Mastodon and O'Donnell deposits 
are located in the Kootenay Arc of southern BC [22].
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18Figure 18. Plot of δ O  (‰) values for different carbonate types SMOW
18versus Temperature. The curved lines are δ O  values of H2O

precipitating fluids calculated using the dolomite-H O fractionation 2

equation of [22]. The dashed black line traces the idealized 
evolutionary trend of a fluid in a MVT setting [23]. Reeves 
MacDonald deposit is in the Kootenay Arc of southern BC, and 
Dawson Oil Field and Great Slave Reef are in the Western Canada 
Sedimentary Basin.
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Figure 16. Ternary plots of CaCO -FeCO -MgCO  (in atomic %) for different dolomite 3 3 3

types and calcite from different study areas. Dolomite is generally stoichiometric 
chemically, but ore-stage types (CCD and SD) are the most Fe-rich (up to 6 mol % 
FeCO ). Data were collected using SEM-EDS analysis. Abbreviations:  FCD = fine-3

grained crystalline dolostone (~host dolostone), MCD = medium-grained crystalline 
dolomite, CCD = coarse-grained crystalline dolomite, SD = saddle dolomite [22].

Figure 19. Fluid inclusions (FI) hosted in sphalerite. The inclusions are primary (P), 
pseudosecondary (PS) and secondary (S) and indeterminate (I) types. A) Kicking Horse: zoned, 
yellow to clear sphalerite with FI of P types. B) Monarch: zoned yellow to clear sphalerite inundated 
with opaque FI of P types. C) Monarch: clear to red zoned sphalerite inundated with irregular-shaped 
FI of P, S and I types. D) & E) Shag: zoned red to clear sphalerite with FI of P and S types. Image E 
shows an enlarged FI (black arrow) with low vapour phase relative to liquid (V:L ratio) and thus a low 
Th value (<80°). F) & G) Shag: clear to yellow, zoned sphalerite hosting small to large, equant FI of I 
type defining a 3D array. Most of the FI are opaque, but inset with outlined black box is a small vapour 
phase [22].
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Figure 14. Sulphur isotope values of carbonate-hosted 
deposits in relation to age of host rocks. Sulphur in most 
MVT deposits is consistent with an origin from seawater 
sulphate, reduced by thermogenic sulphate reduction 
(TSR) and locally bacterogenic sulphate reduction (BSR) 
occurred. Modified from [20]. 
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Conclusions
§ Deposits covered by this study are hosted by shallow-water platform carbonate rocks of

Ancestral North America (Fig. 1). They are located east of the Rocky Mountain trench along the
projection of the Cathedral escarpment (Fig. 2). This escarpment coincides with structurally
controlled facies transitions between platform carbonate rocks and deep-water basin rocks.

§ Dolomite composition is typically stoichiometric; however, ore-stage varieties (“replacive”,
coarse-grained sparry and saddle dolomites) are enriched in Fe (up to 6 mol % FeCO ; Fig.3

16).

18 13§ The δ O  and δ C  values of hydrothermal dolomites at Rock Canyon Creek REE-F-BaVPDB VPDB

deposit are intermediate between values of carbonatites and host carbonate rocks (Fig. 12).
87 86Their Sr/ Sr  values (0.70588 to 0.70873; Fig. 13) are similar or lower than their host

carbonate rocks (0.70866 to 0.70903). This suggests that REE-F-Ba mineralization at Rock
Canyon Creek may have formed from distal carbonatite-related fluids interacting with
carbonate host rocks and mixing with ambient fluids.

§ Deposits are associated with syn- to post-depositional dolomitization represented by
“replacive”, sparry and saddle dolomites (Fig. 4 to 10). These dolomites resulted from
hydrothermal fluid migration along fault systems and strata with enhanced porosity and
permeability.

§ Mineralization occurred intermittently (in more than one stage) during the Paleozoic, i.e.
middle to late Cambrian and Late Devonian to middle Carboniferous (Fig. 20).

§ The homogenization temperatures, measured from fluid inclusions trapped in sphalerite from
the Rocky Mountains MVT deposits (~ 160−240ºC, pressure corrected to 1 kbar; Figs. 17, 18,
19), support a hydrothermal origin.

§ Sulphur isotope values of Sulphide minerals show large variations within a deposit (e.g. +20.5
34to +32.9‰ at Mount Brussilof) and among different deposits (e.g. across all deposits, δ SVCDT

values range from -2.8% to +36.6%, n=53, with most values from +9.9 to +36.6‰, n=51).
Reduced sulphur formation predominantly occurred through TSR of coeval seawater sulphate
for most deposits (e.g. Kicking Horse, Monarch, and Hawk Creek). However, BSR also
occurred locally (e.g. at Boivin; Fig.14).

§ Lead isotopes suggest a mixing trend involving highly radiogenic and non-radiogenic end
members (Fig. 15).

18 13§ The δ O  (-20.0 to -9.8‰) and δ C  (-8.6 to +1.1‰) values for “replacive”, sparry, andVPDB VPDB

saddle dolomites associated with MVT, magnesite, and REE-F-Ba deposits are lower than
18 13their respective host carbonate rocks (δ O = -15.2 to -7.1‰; δ C = -2.9 to +1.2‰), andVPDB VPDB

they compare well with other hydrothermal dolomites in the RMFB (Fig. 11, 12).

§ Fluids responsible for “replacive”, sparry and saddle dolomites associated with MVT and
magnesite deposits were of hydrothermal origin, modified by interaction with siliclastic and
carbonate rocks, and were expelled from deep burial settings by tectonic stresses, as

18exemplified by high temperatures (~ 160−240ºC), low δ O  values (-20.0 to -11.5‰), andVPDB
87 86high Sr/ Sr ratios (0.70879 to 0.71484).

http://www.geology.gov.yk.ca/bedrock_terrane.html
http://www.empr.gov.bc.ca/Mining/Geoscience/PublicationsCatalogue/GeoFiles/Pages/2011-11.aspx
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