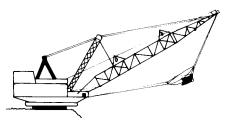

Information	Circular	1990-5
-------------	----------	--------

REFERENCE BCEMPR IC 1990-5 EMPR C. 1 MAI

Province of British Columbia Ministry of Energy, Mines and Petroleum Resources

INFORMATION CIRCULAR 1990-5


INTRODUCTION

The province of British Columbia is richly endowed with coal resources. These abundant in-place reserves (2.9 billion tonnes) have a wide variation in rank (lignite to anthracite) and a broad geographic distribution. This brochure summarizes the major B.C. coalfields and provides generalized coal specifications for each area. Average quality attributes are generally cited without reference to the range of values. Several information sources have been used which include:

- Exploration assessment reports submitted to the B.C. Ministry of Energy, Mines and Petroleum Resources in compliance with the British Columbia Coal Act.
- Published reports of: the B.C. Ministry of Energy, Mines and Petroleum Resources; CANMET; the Geological Survey of Canada; and various other technical publications.

Some caution is advised in using data contained in this brochure. Quality variations within individual coalfields and/or basins may be pronounced and the values presented may not be representative of the range of coal quality. Where product specifications are listed, these values represent the current range of market demand, rather than the full range of available coal quality.

An impressive infrastructure system is in place within the province, including rail and road transportation routes, power networks, community services, seaports and communication systems. This places British Columbia coal resources among the most competitive in the world. Development potential for these resources is therefore considered excellent.

PRODUCING COMPANIES

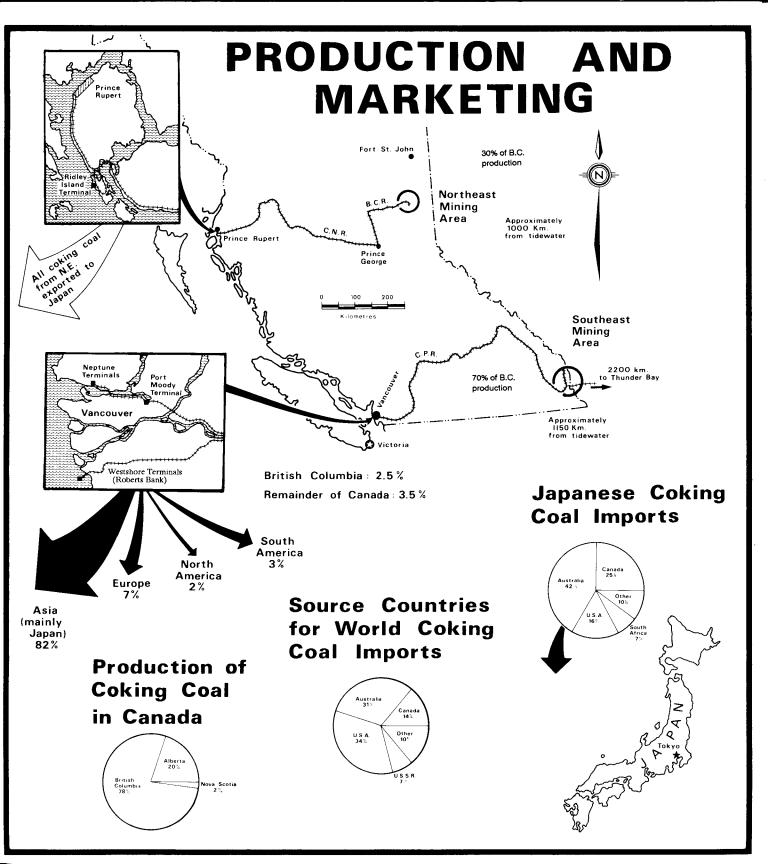
BRINCO COAL CORPORATION

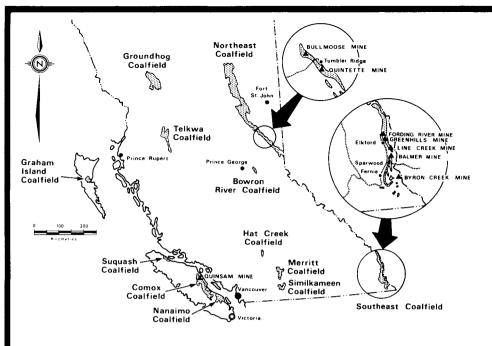
1480 - 1055 West Hastings Street Vancouver, British Columbia V6E 2E9 Phone: (604) 684-9288 Telex: 04-507546 Fax: (604) 684-3178

CROWS NEST RESOURCES LIMITED P.O. Box 2699, Station M 525 - 3rd Avenue S.W. Calgary, Alberta T2P 3Y9 Phone: (403) 232-2110 Telex: 03-82205 Fax: (403) 232-4494

ESSO RESOURCES CANADA LIMITED 237 - 4th Avenue S.W. Calgary, Alberta T2P 0H6 Phone: (403) 237-3737 Telex: 03-821025 Fax: (403) 237-3037

FORDING COAL LIMITED


200, 205 - 9th Avenue S.E. Calgary, Alberta T2G 0R4 Phone: (403) 264-1063 Telex: 03-825846 Fax: (403) 264-7339


QUINTETTE COAL LIMITED 650 West Georgia Street P.O. Box 11575 Vancouver, British Columbia V6B 4N7 Phone: (604) 669-2226 Telex: 04-51547 Fax: (604) 688-2669

TECK CORPORATION

1199 West Hastings Street Vancouver, British Columbia V6E 2K5 Phone: (604) 687-1117 Telex: 04-507709 Fax: (604) 687-6100

WESTAR MINING LTD. 1176 West Georgia Street Vancouver, British Columbia V6E 4B8 Phone: (604) 681-8222 Telex: 04-508723 Fax: (604) 681-9537

COALFIELDS AND RESOURCES

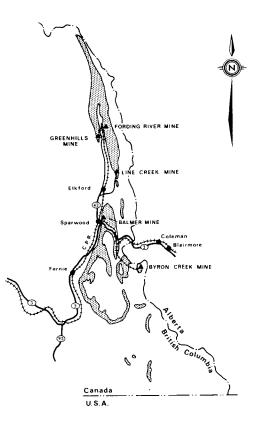
MINES

RESOURCES

OPERATOR	MINE	MINING METHOD	1988* CLEAN COAL PRODUCTION		COALFIELD	COAL RANK	MINING METHOD ADAPTABLE	UTILIZATION	Reserves 1 (millions of	
NORTHEAST COALFIELD:			(millions of tonne	s)	Northeast	Low to High Volatile Bituminous	Open Pit and Underground	Metallurgical and Thermal	947 168	7101 1639
Teck Corporation	Bullmoose	Open Pit	1.7	Mainly	Southeast	Low to High Volatile Bituminous	Open Pit and Underground	Metallurgical, and Thermal	1050 165	7077 1249
Quintette Coal Limited	Quintette	Open Pit	4.6	Metallurgical Mainly Metallurgical	Groundhog	Low Volatile Bituminous to Anthracite	Open Pit and Underground	Thermal	50	5588
SOUTHEAST COALFIELD:					Telkwa	High Volatile A Bituminous	Open Pit and Underground	Thermal	35	88
Fording Coal Limited	Fording River	Open Pit	5.9	Mainly Metallurgical	Hat Creek	Lignite to Subbituminous A	Open Pit	Thermal	440	500
Westar Mining Ltd.	Greenhills	Open Pit	3.1	Metallurgical and Thermal	Similkameen	Lignite to High Volatile A Bituminous	Open Pit and Underground	Thermal	15	21
	Balmer	Open Pit	6.4	Mainly Metallurgical	Merritt	High Volatile C to A Bituminous	Underground	Thermal		18
Crows Nest Resources Limited Esso Resources Canada Limited	Line Creek Byron Creek	Open Pit Open Pit	2.1	Metallurgical and Thermal Thermal	Comox	High Volatile A Bituminous	Open Pit and Underground	Thermal	30	183
COMOX COALFIELD:					Nanaimo	High Volatile B Bituminous	Underground	Thermal	3	7
Brinco Coal Corp.	Quinsam	Open Pit TOTAL	0.150 24.95	Thermal	Suquash	High Volatile C Bituminous		Thermal		
* From the Coal Association o	f Canada, 1989 dire	ctory			Bowron River	High Volatile B and C Bituminous	Underground	Thermal		67
								TOTAL	2903	23 757

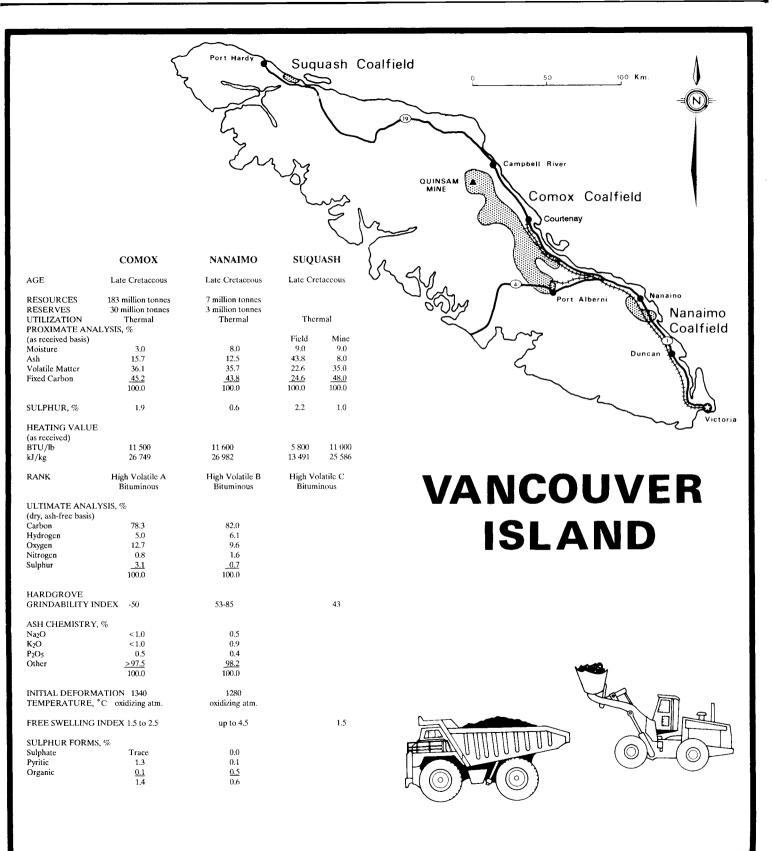
NORTHEAST

	'Run-of-Mine' Coal	Metallurgical Products*	Thermal Products*		
AGE	Early Cretaceous				
RESOURCES metallurgical thermal	7101 million tonnes 1639 million tonnes				
RESERVES metallurgical thermal	947 million tonnes 168 million tonnes				
PROXIMATE ANALYSIS	%				
(as received) Moisture Ash Volatile Matter Fixed Carbon	5.0 15.0 (4.5-21.5) 22.5 <u>57.5</u> 100.0	air dried 1.0-2.0 9.5 20-26 63-69	air dried 2.0-2.5 10.0 21-23 60.0-66.5		
SULPHUR, %	0.5	0.5	0.5		
	0.5	0.5	0.5		
HEATING VALUE BTU/lb kJ/kg	12 500 29 075	13 000 30 238	12 600-13 500 29 308-31 401		
RANK	Mediun	n to Low Volatile Bitum	inous		
ULTIMATE ANALYSIS, 9 (dry, ash-free basis) Carbon Hydrogen Oxygen Nitrogen Sulphur	88.0 5.0 5.4 1.4 <u>0.2</u> 100.0				
HARDGROVE GRINDABILITY INDEX	72-82				
ASH CHEMISTRY, % Na2O K2O P2O5 Olher	<2.3 <2.7 <1.6 95.9-99.8	0.03 Phosphorous			
INITIAL DEFORMATION TEMPERATURE, °C 1200-1500, oxidizing					
FREE SWELLING INDEX Crucible Swelling No.	., 1-7	5-7			
Romax	1.2 (0.8-1.7)				
FLUIDITY, d.d.p.m.		90			
SIZE, mm		38 x 0, 50 x 0			
SULPHUR FORMS, % Pyritic Sulphate Organic	<0.2 0.0 <u><0.4</u> <0.5				


Alberta British Columbia ort St. John 丨 Dawson Creek BULL MOOSE MINE Tumbler Ridge (T) B.C.R Prince George

0 50 100 **Km**

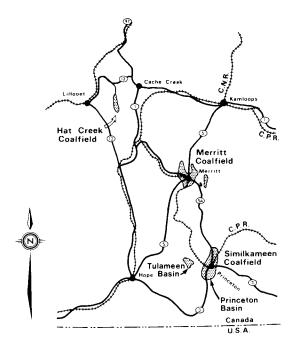
*Ranges derived from TEX report. These ranges represent current contract specifications with Japanese importers - they do not represent the limits of quality specifications of northeast B.C. coals.


SOUTHEAST

	'RUN-OF-MINE' COAL	METALLURGICAL PRODUCTS*	THERMAL PRODUCTS*	SEMI-COKING PRODUCTS*
AGE	Late Jurassic- Early Cretaceous			
RESOURCES				
metallurgical	7077 million tonnes			
thermal	1249 million tonnes			
RESERVES				
metallurgical thermal	1050 million tonnes 165 million tonnes			
PROXIMATE ANA				
(air-dried basis)				
Moisture	2.0	1.0-1.5	1.0-1.5	
Ash	17.0	6.5-9.5	9-15	8.5-10.5
Volatile Matter Fixed Carbon	23.0	19-33	19.5-31	21-28
Pixed Carbon	<u>_58.0</u> 100.0	59-69	60-66	
SULPHUR, %	0.4	0.4-0.5 max	0.3-0.6	0.3-0.6
HEATING VALUE				
BTU/lb	12 250	13 680-14 040	11 520-13 320	
kJ/kg	28 494	31 320-32 657	26 796-30 982	
RANK	Low to High Volati	le Bituminous		
ULTIMATE ANAL	YSIS, %			
(dry, ash-free basis) Carbon	87.5			
Hydrogen	5.0			
Oxygen	5.5			
Nitrogen	1.6			
Sulphur	0.4			
	100.0			
HARDGROVE GRINDABILITY IN	DEX 84 (65->100)			
ASH CHEMISTRY,	%			
Na ₂ O	0.1			
K ₂ O	1.0			
P2O5	1.3			
Other	<u>97.6</u>			
	100.0			
INITIAL DEFORM TEMPERATURE, `				
FREE SWELLING I Crucible Swelling No		6-8	1-5.5	3-6
R _o max	0.9-1.4			
FLUIDITY, d.d.p.m.	< 100			
SIZE, mm		38 x 0		
SULPHUR FORMS	, %			
Pyritic	0.1			
Sulphate	0.0			
Organic	0.3			
	0.4			

) 10 20 Km.

*Ranges derived from TEX report. These ranges represent current contract specifications with Japanese importers - they do not represent the limits of quality specifications of southeast B.C. coals.

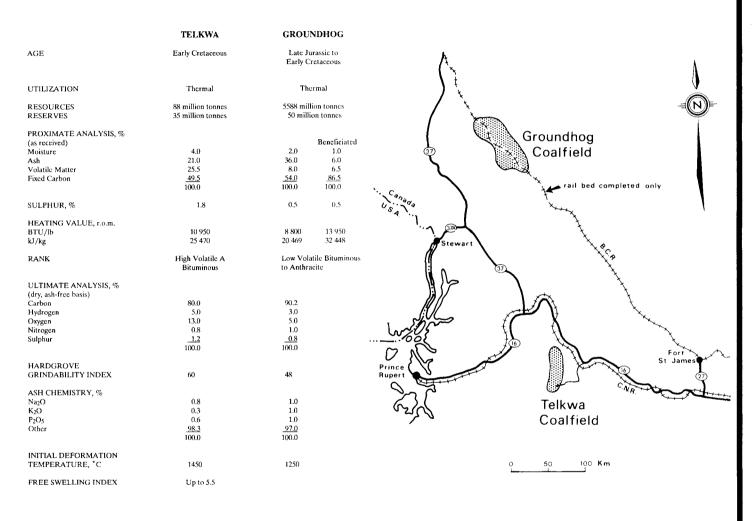


SOUTH CENTRAL

	HAT CREEK**	MERRITT		SIMILKAME	EN
		<u>1</u>	ulameen Basi	in	Princeton Basin*
AGE	Tertiary	Tertiary		Tertiary	
	Eocene	Eocene		Eocene	
RESOURCES	4700 million tonnes	18 million tonnes		21 million tonn	
RESERVES	566 million tonnes	to infinor tonnes		15 million tonn	
UTILIZATION	Thermal	Thermai		Thermal	-3
PROXIMATE ANALYSIS, %	Therman	mermat		Therman	
(as received)					
Moisture	23.5	5.0	5.5		16.2
Ash	26.6	9.0	8.8		7.0
Volatile Matter	24.8	34.0	29.0		30.8
Fixed Carbon	25.1	52.0	56.7		46.2
	100.00	100.0	100.0		100.2
SULPHUR, %	0.4	0.6	0.6		0.45
HEATING VALUE					
(as received)					
BTU/lb	5 804	12 500	11 700		10.100
kJ/kg	13 500	29 075	27 214		23 493
RANK	Lignite	High Volatile	High Volatile		Lignite
	to	C to A	C to High		to
	Subbituminous A	Bituminous	Volatile A		Subbituminous B
ULTIMATE ANALYSIS, %					
(dry. ash-free basis)					
Carbon	72.9				
Hydrogen	4.8				
Oxygen	20.3				
Nitrogen	1.5				
Sulphur	0.5				
Chlorine	<u>> 0.02</u> 100.0				
HARDGROVE	100.0				
GRINDABILITY INDEX		57	51		
ASH CHEMISTRY, %					
Na2O	1		0.67		
K2O	0.5		0.64		
P2O5	0.2		0.17		
Other	<u>98.3</u> 100.0		<u>_98.52</u> 100.00		
INTITAL DEFORMATION	1400-1500	1660 6			
TEMPERATURE, 'C	ash fusion,	1550, softening 1400,	oxidizing atm.		
nan antioni, C	ash tusion, oxidizing atm.				
MISCELLANEOUS		D	omax = 0.62-0.86		
		К,	001aX = 0.02-0.80	,	

*"Princeton" seam only. Mine data.

**Derived from the B.C. Hydro Hat Creek coal liquifaction project prefeasibility study - mining (March 1981).



50 Km

CENTRAL

AGE	Tertiary	
RESOURCES	67 million tonnes	<i>I</i> ‡
UTILIZATION	Thermal	t œ
C HEIZAHON	Therman	to the second se
PROXIMATE ANALYSIS, %		
(as received basis)		
Moisture	4.0	
Ash	35.7	C.N.R.
Volatile Matter	26.4	B Prince George
Fixed Carbon	<u>_33.9</u>	George Bowron
	100.0	River Coalfield
SULPHUR, %	1.25	A
HEATING VALUE		
(as received)		
BTU/lb	8 000	<i>V</i> ŧ.
kJ/kg	18 608	
		Quesnel
RANK	High Volatile C and	
	B Bituminous	Ă
		Į
ULTIMATE ANALYSIS, %		
(dry, ash-free basis)		
Carbon	75.8	
Hydrogen	5.8	
Oxygen	15.2	
Nitrogen	1.6	
Sulphur	<u> </u>	0 50 Km
	100.0	
HARDGROVE		
GRINDABILITY INDEX	53	
		8119 C
MISCELLANEOUS	$R_0max = 0.65$	THAT A
	0-2% Resinite	
		ALX LY

NORTHWEST

COAL DATA SOURCES

Coal production and quality data is generally available from some or all of these sources:

PROVINCE OF BRITISH COLUMBIA MINISTRY OF ENERGY, MINES AND PETROLEUM RESOURCES COAL RESOURCES SUBSECTION 122-525 Superior Street Victoria, B.C., V8V 1X4 CONTACT: DAVID GRIEVE Telephone: (604) 356-8268 FAX: (604) 356-8153

CANMET (ENERGY, MINES AND RESOURCES CANADA) ONE OIL PATCH DRIVE DEVON, ALBERTA T0C 1E0

THE INSTITUTE OF SEDIMENTARY AND PETROLEUM GEOLOGY (GEOLOGICAL SURVEY OF CANADA) 3303 - 33RD STREET N.W. CALGARY, ALBERTA T2L 2A7

THE COAL ASSOCIATION OF CANADA 502, 205 - 9TH AVENUE S.E. CALGARY, ALBERTA T2G 0R3

B.C. RESEARCH 3650 WESBROOK MALL VANCOUVER, B.C. V6S 2L2