COAL DATA SOURCES

PROVINCE OF BRITISH COLUMBIA MINISTRY OF ENERGY, MINES AND PETROLEUM RESOURCES

GEOLOGICAL SURVEY BRANCH

COAL UNIT

(Coal quality and geology information)

553 Superior Street

Victoria, B.C. V8V 1X4 Canada

Phone: (604) 387-5975 Fax: (604) 356-8153

John Cunningham Dave Grieve

Northeast B.C.
Southeast B.C./Coal Quality

Barry Ryan Alex Matheson Northwest B.C./Coalbed Methane Central and South Central B.C.,

Vancouver Island

Maria Holuszko

Coal Quality

MINERAL POLICY BRANCH

(Policy, statistics, economics and land use)

525 Superior Street, Room 26

Victoria, B.C. V8V 1X4

Phone: (604) 387-3787

Fax: (604) 387-5713

MINERAL TITLES BRANCH

(Coal rights tenure)

525 Superior Street, Room 17

Victoria, B.C. V8V 1X4 Phone: (604) 387-4417

Fax: (604) 387-3594

RESOURCE MANAGEMENT BRANCH

(Coal exploration and production permitting and regulation; reclamation)

525 Superior Street, Room 105

Victoria, B.C. V8V 1X4

Phone: (604) 387-3781 Fax: (604) 387-5985

PETROLEUM TITLES BRANCH

(Oil and natural gas tenure, including coalbed methane)

617 Government Street, 4th Floor

Victoria, B.C. V8V 1X4

Phone: (604) 387-1908

Fax: (604) 356-0160

Coal quality and/or production data are also generally available from the following:

ENERGY, MINES AND RESOURCES CANADA

CANMET

Coal Research Laboratories

P.O. Bag 1280

Devon, Alberta ToC 1E0

CANMET

Energy Research Laboratories

555 Booth Street

Ottawa, Ontario K1A 0G1

Geological Survey of Canada

The Institute of Sedimentary and Petroleum Geology

3303-33rd Street N.W.

Calgary, Alberta T2L 2A7

Mineral Policy Sector

460 O'Connor Street

Ottawa, Ontario K1A 0E4

THE COAL ASSOCIATION OF CANADA

502, 205-9th Avenue S.E. Calgary, Alberta T2G 0R3

93907

British Columbia Coals Quality & Resources

PROVINCE OF BRITISH COLUMBIA MINISTRY OF ENERGY, MINES AND PETROLEUM RESOURCES GEOLOGICAL SURVEY BRANCH

INFORMATION CIRCULAR 1992-18

INTRODUCTION

The province of British Columbia is richly endowed with more than 19 billion tonnes of coal resources which range from lignite to anthracite in rank. This brochure summarizes available information concerning the major coalfields and provides generalized coal-quality data for each. Averages of quality parameters are generally cited without reference to the range of values.

Several information sources have been used; including:

- Published reports of the British Columbia Ministry of Energy, Mines and Petroleum Resources; CANMET; the Geological Survey of Canada; and, the technical articles written by staff of coal mining and exploration companies.
- Unpublished, assessment reports submitted to the British Columbia Ministry of Energy, Mines and Petroleum Resources by exploration companies in compliance with the B.C. Coal Act.
- Trade publications, including the TEX Report's "Coal Manual".

Caution is advised in using data contained in this brochure. Quality variations within individual coalfields and/or basins are often pronounced and the values presented may not be representative of the range of coal quality present. Where product specifications are listed, these values represent the current range of market demand, rather than the full range of available coal quality.

An efficient and intricate infrastructure is in place within the province, including rail and road transportation routes, power networks, community services, deep-water seaports and communications systems. This ensures that British Columbia coal resources are among the most competitive in the world.

PRODUCING COMPANIES

ESSO RESOURCES CANADA LIMITED

237 - 4th Avenue S.W. Calgary, Alberta T2P 0H6

Phone: (403) 237-3737 FAX: (403) 237-3037

FORDING COAL LIMITED

1000, 205 - 9th Avenue S.E. Calgary, Alberta T2G 0R4

Phone: (403) 264-1063 FAX: (403) 264-7339

HILLSBOROUGH RESOURCES LIMITED

c/o 1280 - 1055 West Hastings Street Vancouver, British Columbia V6E 2E9 Phone: (604) 684-9288

FAX: (604) 684-3178

MANALTA COAL LTD.

734 - 7th Avenue S.W. P.O. Box 2880 Calgary, Alberta **T2P 2M7**

Phone: (403) 294-5311 FAX: (403) 269-8075

QUINTETTE COAL LIMITED

200 Burrard Street Vancouver, British Columbia V6C3L9 Phone: (604) 687-1117 FAX: (604) 687-6100

TECK CORPORATION

200 Burrard Street Vancouver, British Columbia V6C3L9 Phone: (604) 687-1117 FAX: (604) 687-6100

WESTAR MINING LTD.

1176 West Georgia Street Vancouver, British Columbia V6E 4B8 Phone: (604) 681-8222

FAX: (604) 681-9537

TOTAL

COALFIELD	A.S.T.M. COAL RANK	POTENTIAL UTILIZATION	MEASURED RESERVES (million	RESOURCES OF IMMEDIATE INTEREST* ns of tonnes)
Peace River	Low to High Volatile Bituminous	Metallurgical and Thermal	1015	9270
East Kootenay	Low to High Volatile Bituminous	Metallurgical and Thermal	1370	6670
Klappan and Groundhog	Low Volatile Bituminous to Anthracite	Thermal	100	1600
Telkwa Deposit	High Volatile A Bituminous	Thermal	30	180
Hat Creek	Lignite to Subbituminous B	Thermal	440	940
Similkameen	Lignite to High Volatile B Bituminous	Thermal	20	350
Merritt	High Volatile B to A Bituminous	Thermal	10	80
Comox	High Volatile A & B Bituminous	Thermal	35	265
Nanaimo	High Volatile A & B Bituminous	Thermal	0	10
Suquash	High Volatile C & B Bituminous	Thermal	0	40
Bowron River	High Volatile B & C Bituminous	Thermal	10	70
		TOTAL	3030	19 475

^{*}Source: Smith G.G. (1989): Coal Resources of Canada, Geological Survey of Canada, Paper 1989-4.

COALFIELDS AND **RESOURCES**

OWNER	MINE	MINING METHOD	1990 CLEAN COAL PRODUCTION* (millions of tonnes)	UTILIZATION
NORTHEAST				
Teck Corporation	Bullmoose	Open Pit	1.6	Mainly Metallurgical
Quintette Coal Limited	Quintette	Open Pit	4.6	Metallurgical
SOUTHEAST				
Fording Coal Limited	Fording River	Open Pit	6.3	Metallurgical and Thermal
Westar Mining Ltd.	Greenhills	Open Pit	3.0	Metallurgical and Thermal
	Balmer	Open Pit	5.6	Metallurgical and Thermal
Manalta Coal Ltd.	Line Creek	Open Pit	2.1	Metallurgical and Thermal
Esso Resources Canada Limited	Byron Creek	Open Pit	1.5	Thermal and Weak Coking
VANCOUVER ISLAND)			
Hillsborough Resources Limited	Quinsam	Open Pit and Underground	0.3	Thermal
		TOTAL	25.0	

NORTHEAST

AGE

Early Cretaceous

TOTAL RESOURCES

OF IMMEDIATE

INTEREST

9270 million tonnes

MEASURED

RESERVES	1015 million tonnes		
	'RUN-OF-MINE' COAL	METALLURGICAL PRODUCTS*	THERMAL
PROXIMATE ANALYS	IS. %		
(as received)		air dried	air dried
Moisture	5.0	1.0-2.0	2.0-2.5
Ash	15.0 (4.5-21.5)	9.5	10.0
Volatile Matter	22.5	20-26	21-23
Fixed Carbon	57.5	63-69	60,0-66.5
SULPHUR, %	0.5	0.5	0.5
HEATING VALUE			
MJ/kg	29.1	30.2	29.3-31.4
BTU/lb	12 500	13 000	12 600-13 500
kcal/kg	7 000	7 222	7000-7500
A.S.T.M. RANK	High t	to Low Volatile Bituminous	
ULTIMATE ANALYSIS	5, %		
(dry, ash-free basis)			
Carbon	88.0		
Hydrogen	5.0		
Oxygen	5.4		
Nitrogen	1.4		
Sulphur	0.2		
	100.0		
HARDGROVE			
GRINDABILITY INDE	X 72.82		
ASH CHEMISTRY, %			
Na ₂ O	<2.3		
K ₂ O	<27		
P2O5	< 1.6		
INITAL DEFORMATIO	ON		
TEMPERATURE °C	1200-1500, oxidizing		
FREE SWELLING IND	EX, 1-7	5-7	
Romax	1.2 (0.8-1.7)		
FLUIDITY, d.d.p.m.		90	
SIZE, mm		38 x 0, 50 x 0	
SULPHUR FORMS, %			
	-0.2		

< 0.2

0.0

< 0.4

< 0.6

Pyritic

Sulphate

Organic

^{*}Ranges derived from the 1988 TEX Report Coal Manual. These ranges represent current contract specifications with Japanese importers - they do not represent the limits of quality specifications of northeast B.C. coals.

SOUTHEAST

AGE

Late Jurassic Early Cretaceous

TOTAL RESOURCES

OF IMMEDIATE INTEREST

6670

MEASURED RESERVES

	'RUN-OF-MINE' COAL	METALLURGICAL PRODUCTS*	THERMAL PRODUCTS	SEMI-COKING PRODUCTS
PROXIMATE ANAI	LYSIS, %			
(air-dried basis)	1.0			
Moisture	2.0	1.0-1.5	1.0-1.5	
Ash	17.0	6.5-9.5	9-15	8.5-10.5
Volatile Matter	23.0	19.33	19.5-31	21-28
Fixed Carbon	58.0	59-69	60-66	
	100.0			
SULPHUR, %	0.4	0.4-0.5 max	0.3-0.6	0.3-0.6
HEATING VALUE				
ВТИЛЬ	12 250	13 680-14 040	11 520-13 320	
MJ/kg	28.5	31.3-32.7	26.8-31.0	
kcal/kg	6820	7600-7800	6400-7400	
A.S.T.M. RANK	Low to High Volat	tile Bituminous		
ULTIMATE ANALY	rsis. %			
(dry, ash-free basis)				
Carbon	87.5			
Hydrogen	5.0			
Oxygen	5.5			
Nitrogen	1.6			
Sulphur	0.4			
	100.0			
HARDGROVE				
GRINDABILITY IN	DEX 84 (65->100)			
ASH CHEMISTRY,	%			
Na ₂ O	0.1			
K ₂ O	1.0			
P2O5	1.3			
INITIAL DEFORMATEMPERATURE)		
	oxidizing			
FREE SWELLING I	NDEX 4.0 (2-7.5)	6-8	1-5.5	3-6
Romax+	1.3 (0.8-1.6)			
FLUIDITY, d.d.p.m.	<100			
SIZE, mm		38 x 0		
SULPHUR FORMS,	%			
Pyritic	0.1			
Sulphate	0.0			
Organic	0.3			
Section Co.	0.4			

Ranges derived from the 1988 TEX Report Coal Manual. These ranges represent current contract specifications with Japanese importers - they do not represent the limits of quality specifications of southeast B.C. coals. † Source: B.C. Geological Survey,

NORTHWEST

		KLAPP	AN and	TUYA
	TELKWA	GROUN	DHOG	RIVER
AGE	Early	Late		Early
	Cretaceous	Jura	ssic	Tertiary
UTILIZATION	Thermal	The	Thermal	
TOTAL RESOURCES				
OF IMMEDIATE	180 million	1600 n	nillion	-
INTEREST	tonnes	ton	nes	
MEASURED RESERVES	30 million	100 million		
	tonnes	ton	nes	
PROXIMATE ANALYSIS, %	,			
(as received)			Beneficiated	
Moisture	4.0	2.0	1.0	11.1
Ash	21.0	36.0	6.0	24.3
Volatile Matter	25.5	8.0	6.5	29.1
Fixed Carbon	49.5	54.0	86.5	34.3
	100.0	100.0	100.0	98.8
SULPHUR, %	1.8	0.5	0.5	0.5
HEATING VALUE				
MJ/kg	25.5	20.5	324	18.3
ВТИЛЬ	10 950	8 800	13 950	7 880
kcal/kg	6 080	4 890	7 750	4 380
A.S.T.M. RANK	High Volatile	Low Volatil	e Bituminous	High Volatile
	A Bituminous	to Anthraci	te	C to B Bituminous
ULTIMATE ANALYSIS, %				
(dry, ash-free basis)				
Carbon	80.0	90.2		
Hydrogen	5.0	3.0		
Oxygen	13.0	5.0		
Nitrogen	0.8	1.0		
Sulphur	1.2	0.8		
	100.0	100.0		
HARDGROVE				
GRINDABILITY INDEX	60	48		53
ASH CHEMISTRY, %				
Na ₂ O	0.8	1.0		
K ₂ O	0.3	1.0		
P ₂ O ₅	0.6	1.0		
NITIAL DEFORMATION				
TEMPERATURE °C	1450	1250		
FREE SWELLING INDEX	Up to 5.5			

^{*}Source: B.C. Geological Survey. †Source: Gulf Canada.

CENTRAL

AGE	Tertiary
TOTAL RESOURCES	
OF IMMEDIATE	
INTEREST	70 million tonnes
MEASURED RESERVES	10 million tonnes
UTILIZATION	Thermal
PROXIMATE ANALYSIS, %	
(as received basis)	
Moisture	4.0
Ash	35.7
Volatile Matter	26.4
Fixed Carbon	33.9
	Total 100.0
SULPHUR, %	1.25
HEATING VALUE	
(as received)	
MJ/kg	18.6
BTU/lb	8 000
kcal/kg	4 500
A.S.T.M. Rank	High Volatile C and
	B Bituminous
ULTIMATE ANALYSIS, %	
(dry, ash-free basis)	
Carbon	75.8
Hydrogen	5.8
Oxygen	15.2
Nitrogen	1.6
Sulphur	1.6
24	Total 100.0
HARDGROVE	
AND AN ARE A STATE OF THE PERSON AS ARE ASSESSED.	

53

 \overline{R}_{o} max = 0.65 0-2% Resinite

GRINDABILITY INDEX

PETROGRAPHY

SOUTH CENTRAL

	HAT CREEK	MERRITT	SIMILKAN	IEEN
			Tulameen Basin	Princeton Basin
AGE	Tertiary	Tertiary	Tertiar	y
	Eocene	Eocene	Eocene	
TOTAL RESOURCES				
OF IMMEDIATE	940 million	89 million	240 million	110 million
INTEREST	tonnes	tonnes	tonnes	tonnes
MEASURED	440 million	10 million	20 million	0
RESERVES	tonnes	tonnes	tonnes	
UTILIZATION	Thermal	Thermal	Thermal	
PROXIMATE ANALY (as received)	SIS, %			
Moisture	23.5	5.0	5.5	16.2
Ash	26.6	9.0	8.8	7.0
Volatile Matter	24.8	34.0	29.0	30.8
Fixed Carbon	25.1	52.0	56.7	46.2
- Control of the Cont	100.0	100.0	100.0	100.2
	EDMAC		2000	200.2
SULPHUR, %	0.4	0.6	0.6	0.45
HEATING VALUE (as received)				
71	13.5	20.4	27.2	
MJ/kg BTU/lb	5800	29.1 12.500	27.2 11 700	23.5
kcal/kg	3 200	6 950	6 500	10 100 5 600
A.S.T.M. RANK	******	FT: 1 TT 1		******
A.S. I.M. RANK	Lignite to Subbituminous B	High Volatile B to A Bituminous	High Volatile C to B Bituminous	Lignite to High Volatile B Bituminous
ULTIMATE ANALYSI	S, %			
(dry, ash-free basis)	72.9			
Hydrogen	4.8			
Oxygen	20.3			
Nitrogen	1.5			
Sulphur	0.5			
HARDGROVE		-		
GRINDABILITY INDE	X	57	51	
ASH CHEMISTRY, %				
Na ₂ O	1		0.67	
K ₂ O	0.5		0.64	
P ₂ O ₅	0.2		0.17	
INITIAL DEFORMATI	ON 1400-1500	1550	1400	
TEMPERATURE °C	ash fusion oxidizing atm.	softening	oxidizing atm.	

^{*&}quot;Princeton" seam only Mine data.

⁺ Source: B.C. Geological Survey.

FREE SWELLING INDEX 1.5 to 2.5

>1275

oxidizing atm.

0.6-0.85

1280

oxidizing atm.

up to 4.5

0.64-0.72

1.5

0.63-0.81

INITIAL DEFORMATION

TEMPERATURE °C

Romax+

Product specifications, Quinsam mine, 1988. Source: B.C. Geological Survey Branch.