

Province of British Columbia Ministry of Energy, Mines and Petroleum Resources Hon. Anne Edwards, Minister

Mineral Resources Division Geological Survey Branch

BRITISH COLUMBIA COAL QUALITY CATALOG

Information Circular 1992-20

PRODUCING COMPANIES

ESSO RESOURCES CANADA LIMITED 237 - 4th Avenue S.W. Calgary, Alberta T2P 0H6 Phone: (403)237-3737 FAX: (403)237-3037

FORDING COAL LIMITED 1000, 205 - 9th Avenue S.E. Calgary, Alberta T2G 0R4 Phone: (403)264-1063 FAX: (403)264-7339

HILLSBOROUGH RESOURCES LIMITED c/o 1280 - 1055 West Hastings Street Vancouver, British Columbia V6E 2E9 Phone: (604)684-9288 FAX: (604)684-3178

MANALTA COAL LTD. 734 - 7th Avenue S.W. P.O. Box 2880 Calgary, Alberta T2P 2M7 Phone: (403)294-5311 FAX: (403)269-8075

QUINTETTE COAL LIMITED 200 Burrard Street Vancouver, British Columbia V6C 3L9 Phone: (604)687-1117 FAX: (604)687-6100

TECK CORPORATION

200 Burrard Street Vancouver, British Columbia V6C 3L9 Phone: (604)687-1117 FAX: (604)687-6100

WESTAR MINING LTD. 1176 West Georgia Street Vancouver, British Columbia V6E 488 Phone: (604)681-8222 FAX: (604)681-9537

Province of British Columbia Ministry of Energy, Mines and Petroleum Resources Hon. Anne Edwards, Minister Mineral Resources Division Geological Survey Branch

BRITISH COLUMBIA COAL QUALITY CATALOG

Information Circular 1992-20

British Columbia Cataloguing in Publication Data

Main entry under title: British Columbia coal quality catalog. --[1989]-

(Information Circular, ISSN 0828-6094)

Biennial.

Assembled by the staff of the Coal Resources Subsection. Cf. Foreword.

ISSN 0847-3684 = British Columbia coal quality catalog

 Coal - British Columbia - Analysis.
 Coal - British Columbia - Reserves.
 British Columbia. Geological Survey Branch.
 Coal Resources Subsection.
 Series: Information circular (British Columbia. Ministry of Energy, Mines and Petroleum Resources)

TN806.C32B71 553.2'4'09711

VICTORIA BRITISH COLUMBIA CANADA

AUGUST 1992

Ministry of Energy, Mines and Petroleum Resources

TABLE OF CONTENTS

		Page
FOREWORD	18	. 1
INTRODUCTION	2	. 3
COAL ANALYSIS		. 5
Reporting of Coal Analysis		. 5
Proximate Analysis		. 5
Moisture		5
Volatile Matter		5
Ash		6
Fixed Carbon		6
Ultimate Analysis		. 6
Calorific Value		. 6
Hardgrove Grindability Index		. 6
Free Swelling Index (FSI)		6
Astm Classification of Coal by Rank		6
Coal Petrography		6
Maceral Analysis		6
Vitrinite Reflectance		6
GEOLOGICAL SETTING OF BRITISH		
COLUMBIA COALS		. 9
Peace River Coalfield		. 9
East Kootenay Coalfields		. 11
Hat Creek Coalfield	2	. 13
Merritt Coalfield		. 13
Similkameen Coalfield		. 13
Tulameen Basin		. 13
Princeton Basin		. 13

Page
Vancouver Island Coalfields
Comox Coalfield16
Nanaimo Coalfield16
Telkwa Deposit
Klappan Coalfield
Bowron River Coalfield
OUALITY OF BRITISH COLUMBIA COALS 17
Peace River Coalfield
East Kootenav Coalfields
Hat Creek Coalfield
Merritt Coalfield
Similkameen Coalfield 22
Tulameen Basin 22
Princeton Basin 22
Vancouver Island Coalfields 22
Comor Coalfield 22
Nansimo Coalfield 22
Talkus Denorit 24
Vianas Cosleald
Rappan Coalifield
Dowron River Coanield
REFERENCES
APPENDICES
Appendix 1 - Quality of British Columbia Coals
(Mine Products)
(Non-Producing Properties) 27
(non-rionnemBriohennes) ++++++++++++++++++++++++++++++++++++

FOREWORD

This is the second edition of the British Columbia Coal Quality Catalog. It outlines the range of coal qualities occurring in British Columbia on a deposit-by-deposit basis. It is intended to be used in conjunction with Paper 1986-3, *Coal in British Columbia*. General information concerning coal quality in the province can also be found in Information Circular 1991-20, a brochure entitled *British Columbia's Coals - Quality and Resources*.

This edition of the Catalog differs from the first in three important ways. In the first edition, coal quality data from active mines were compiled primarily from previously published sources. For this edition we have asked each mine to provide their own data. Another difference is the inclusion of coal petrographic data in this edition. Lastly, this version of the Catalog contains graphs which exhibit relationships between calorific value and ash content, and between vitrinite reflectance (R_{max}) and volatile matter (dry, ash-free) for individual coalfields.

The Catalog is intended to be used as a guide to the quality of available British Columbia coal products (Appendix 1). However, caution should be used in making decisions based on its contents; users are advised to check with original sources, especially marketing departments of mining companies, for verification of data. Moreover, the products listed for each mine do not necessarily represent the whole range of products available or potentially producible. Again, the mining companies are the best source of this type of information. They are listed on the inside front cover.

The Catalog is also intended to provide a scientific database of coal quality information. The data on raw coals from non-producing properties (Appendix 2) will be the most useful in this regard. Again, caution is urged in using these data, because they have not been selected randomly. It should also be noted that the information in Appendix 2 cannot be assumed to be representative of the quality of potential commercial production from any given coalfield or property.

The British Columbia Coal Quality Catalog has been assembled with the help of all the staff of the Coal Unit of the British Columbia Geological Survey Branch, and to them I am very grateful. In particular, discussions with my colleagues Maria Holuszko and Barry Ryan have been very helpful. Portions of the text from the first edition concerning the Peace River region, written by Ward Kilby, have been reproduced here with minor changes only.

I am also most grateful to the coal-producing companies in British Columbia for providing data. Ross Leeder, Quintette Coal, provided special assistance at a critical stage. The Coal Association of Canada, in particular Stu Hunter, provided helpful guidance.

Future revisions are planned, on roughly a two-year basis, and comments on the style and content of this edition will be welcomed, as well as any suggestions to help improve future editions.

British Columbia

Figure 1. Location of coal deposits in British Columbia.

Geological Survey Branch

84

INTRODUCTION

Coal in British Columbia ranges in ASTM rank from lignitec to anthracite, with most production and reserves currently in the bituminous class. British Columbia coals are used primarily for coke production and thermal power generation, and are exported to all corners of the globe. Their quality and diversity make them attractive to almost all users of coking and thermal coal, as well as for other applications.

Coal production in British Columbia is currently greater than 25 million tonnes per year, and come from eight different mines. Five of these mines are in the southeast of the province (Figure 1): the Westar Mining Ltd. Balmer and Greenhills operations; the Manalta Coal Ltd. Line Creek mine; the Esso Resources Canada Limited Coal Mountain mine, operated by Byron Creek Collieries; and the Fording Coal Limited Fording River operations. Another two are in northeastern British Columbia: the Quintette mine of Quintette Coal Limited (currently being managed by Teck Corporation) and Teck Corporation's Bullmoose mine. The remaining British Columbia coal mine, Quinsam, is on Vancouver Island, and is owned by Hillsborough Resources Limited and operated by Brinco Coal Corporation. It may appear that we have been somewhat arbitrary in selecting coal deposits to include in the catalog. In some cases this has been forced upon us by nonavailability of data, and in other cases we have made decisions based on our perception of the relative significance of specific coal deposits. In some cases, we have included deposits simply to provide geographic or stratigraphic representation.

Data on active coal mines were provided by the mining companies, and represent attributes of specific products. These are included as Appendix 1.

Data on the other coal deposits have been compiled on a seam-by-seam basis, and come primarily from the Ministry's large collection of coal company assessment reports, representing technical submissions required to document exploration programs. These are included as Appendix 2. Most of these data represent analyses on drill-core samples; in some instances bulk-sample data were used. Raw coal data, as opposed to clean coal, has been used as much as possible. The existence of petrographic data was the primary criterion in selection of sample records to include.

COAL ANALYSIS

The following is intended as only a brief overview of coal analysis and classification. For further information the reader is referred to Ward (1984) and Carpenter (1988) which were used as source material for this section.

REPORTING OF COAL ANALYSIS

Coal analytical data can be presented in several ways, referred to as bases of reporting, depending on the end use of the data. Some of the more common are summarized in Figure 2. Coal quality results on different samples are not directly comparable unless they are reported on the same basis. Simple arithmetic formulae can be used to make conversions between bases (see Ward, 1984, Table 2.7). However, the calculation of mineral matter from ash, when required, presents difficulty. It is common to rely on the Parr formula, which was developed for U.S. coals (mineral matter = 1.08 ash + 0.55 sulphur), but it is doubtful that this is a reliable formula in all instances (Ward, 1984, page 62).

0081	Fixed carb	t on	Dry, mineral matter f	Dry, ash free	Dry:	Vir dried	va received
Pure	Volatile organic matter	Volatile matter	Teo -				
matter	Volatile mineral matter	_					
Mineral	Ast	,					
moisture	Residual m	cisture				1	
Total	Surface mo	oisture			_		

Figure 2. Components of a coal included when reporting analyses to different bases (from Ward, 1984). Data presented on an as-received (ar) basis, also known as the as-sampled basis, reflect the entire coal prior to any drying treatment. The air-dried (ad) basis, also known as the as-analyzed basis, represents all the coal minus the surface moisture which is lost during laboratory air-drying. The dry basis refers to calculated values on theoretical coal with no moisture. The dry, ash-free basis (daf) is calculated as though the coal contains no moisture or ash. The dry, mineral-matter-free basis (dmmf) represents coal which contains no moisture or mineral matter. Finally, two bases which are not shown in Figure 2, the moist, ash-free (maf) and moist, mineralmatter-free (mmmf) bases, represent coals with their residual (or air-dried) moisture but no ash or mineral matter, respectively.

In this report the most commonly used basis is airdried; where possible in Appendix 2 (nonproducing properties) volatile matter and calorific value have also been converted to dry, ash-free and moist, ash-free bases, respectively (columns P and V). This permits a rough comparison with the ASTM rank clasification (ASTM D388:1984; see below).

PROXIMATE ANALYSIS

Proximate analysis consists of a series of tests which measure the relative amounts of moisture, volatile and nonvolatile organic compounds, and ash in a coal. The sum of the four components is 100 per cent.

MOISTURE

There are many different forms of moisture which can be measured in coal. For the purposes here, moisture can be measured on either the sample as received or after air drying (Figure 2). In the former case, the value obtained represents total moisture, while in the latter case the surface moisture has been removed and what remains is usually referred to as residual moisture or air-dried moisture. It is not unusual to see residual moisture referred to as inherent moisture, which is incorrect. Inherent moisture is that moisture "considered to be part of the deposit and not that which exists as a surface addition" (Todd, 1982), and is determined differently.

VOLATILE MATTER

Volatile matter consists of "the components of the coal, except for the moisture content, that are liberated at high temperature in the absence of air" (Ward, 1984). This usually consists mainly of organic material, but contains some amount of volatile material liberated from the mineral matter during the analysis.

AsH

Ash is "the non-combustible inorganic residue that remains when coal is burned" (Ward, 1984). It represents most of the mineral matter, the remainder being driven off during determination of volatile matter.

FIXED CARBON

The fixed carbon content of a coal is "the carbon found in the material that remains after the volatile matter has been expelled" (Ward, 1984). It is not determined directly, but is simply the difference between 100% and the sum of the moisture, volatile matter and ash.

ULTIMATE ANALYSIS

Ultimate analysis involves the determination of the percentages of carbon, hydrogen, nitrogen, oxygen and sulphur. If the results are reported on a dry, ash-free basis, the sum of the values of these 5 elements is 100 per cent. All the elements except oxygen are determined directly, while oxygen can be determined directly, but is usually calculated as the difference between 100 per cent and the sum of the other components.

CALORIFIC VALUE

The energy liberated from a coal under controlled conditions in a laboratory is referred to as calorific value or specific energy. It gives a rough indication of the energy available during utilization, but does not necessarily predict the performance of a coal in specific situations.

HARDGROVE GRINDABILITY INDEX

The Hardgrove grindability index (HGI) is a measure of the ease with which a coal may be ground into a powder. Low values (less than 50) represent hard coals.

FREE SWELLING INDEX (FSI)

The free swelling index (or crucible swelling number) of a coal is a measure of its so-called caking capacity, an important indication of its potential for making coke. Values range from 0 (non-caking) to 9. The ideal range is 4 to 6 (Ward, 1984) although as a rule different coals are blended together to provide optimum characteristics. For most Western Canadian coking coals, FSI is a better indicator of coking potential than either fluidity or dilatation tests (Price and Gransden, 1987).

ASTM CLASSIFICATION OF COAL BY RANK

The term "rank" refers to the position of a coal with respect to the metamorphic gradation from lignite (low

rank) to anthracite (high rank). There are several coal quality parameters which vary with rank and can be used as rank indicators, including volatile matter, calorific value, carbon, hydrogen, oxygen, vitrinite reflectance, moisture and others. With the exception of vitrinite reflectance, however, none of these is applicable over the entire range of coal ranks. The widely used ASTM rank classification (Table 1) uses two separate parameters, calorific value for low-rank coals and fixed carbon for high-rank coals. For coals which are near the boundary. the presence of agglomerating (essentially caking) characteristics is also used to determine to which group they belong. The ASTM system recognizes four classes of coal: lignitic, subbituminous, bituminous and anthracitic, in increasing rank order. Each of these is subdivided into groups (Table 1), which include familiar terms like "semianthracite" and "medium-volatile bituminous".

Individual samples listed in Appendix 2 are not classified into ASTM rank categories. Discussions in the text, however, do indicate the range of rank values in Appendix 2 for individual deposits.

COAL PETROGRAPHY

There are several types of microscopic coal analysis, and data from the two most common, maceral analysis and vitrinite reflectance, are included in this report. Full descriptions of the principles and techniques of coal petrography can be found in Bustin *et al.* (1985).

MACERAL ANALYSIS

Macerals are the organic constituents of coal, and their quantification by point counting (in reflected light under oil immersion) is referred to as maceral analysis. Macerals fall into three groups, which differ from each other in their reflectance (brightness), morphology and reactivity: vitrinite, exinite and inertinite. Results shown here (see Appendix 2) include the amounts of vitrinite, exinite and the inertinite maceral semifusinite in raw or clean coal.

VITRINITE REFLECTANCE

The reflectance (brightness) of the maceral vitrinite increases with increasing rank. Two types of reflectance can be measured on a vitrinite grain, maximum reflectance, obtained by rotating the microscope stage through 360° and recording the highest value, and random reflectance, the reflectance of the grain in the orientation in which it is encountered. In standard practice, the reflectances of 50 vitrinite grains in a sample are averaged, leading to determination of mean maximum reflectance (R_{max}) or mean random reflectance (R_m or R_{random}). In this report (Appendix 2), only R_{max} values are included. Rank classifications are not assigned to reflectance values on a sample-by-sample basis in Appendix 2, but discus-

Class			Group	Fixed carbo limits, % dmmf	n	Calorific vi limits MJ/kg	alue	Agglomerating character
				Equal or greater than	Less than	Equal or greater than	Less than	
r -	Anthracitic	1	meta-anthracite	98				
		2	anthracite	92	98			non-
		3	semi-anthracite	86	92		•	agglomerating
I	Bituminous	1	low-volatile bituminous coal	78	86			1
		2	medium-volatile bituminous coal	69	78			2.0
		3	high-volatile A bituminous coal		69	32.56	•	commonly agglomerating
		4	high-volatile B bituminous coal		30.24	32.56		
		5	high-volatile C		26.75	30.24		 Version and the second s
			bituminous coal		24.42	26.75		agglomerating
ш	Subbituminous	1	sub-bituminous A coal		24.42	26.75		
		2	sub-bituminous B coal		22.10	24.42		non-
		3	sub-bituminous C coal		19.31	22.10	·	aggiomerating
IV	Lignitic	1	lignite A		14.65	19.31		
	5	2	lignite B			14.65		1

TABLE 1

sion of rank classifications in the text take reflectance values, where present, into account. For discussion of the relationship between vitrinite reflectance and ASTM

rank classes in Western Canadian coals, see Cameron (1989).

PEACE RIVER COALFIELD

Figure 3. Location of properties in the Peace River coalfield.

GEOLOGICAL SETTING OF BRITISH COLUMBIA COALS

Details concerning the geology of the coalfields and individual coal properties in British Columbia are contained in Paper 1986-3, Coal in British Columbia, as well as in numerous other technical publications. This section is intended to provide a general overview only, and the reader is referred to other sources for more detailed information.

British Columbia coal deposits range from Late Jurassic to Tertiary in age, and occur in three of the six major tectonic belts. The Insular Belt contains the Upper Cretaceous Vancouver Island coals. The Intermontane Belt contains Jurassic and Cretaceous coals of northwestern British Columbia, and Tertiary coals of south-central British Columbia. The Rocky Mountain Fold and Thrust (or Foreland) Belt includes Jurassic and Cretaceous coal deposits of northeast British Columbia, known as the Peace River coalfield, and Jurassic-Cretaceous coal deposits of southeast British Columbia, known as the East Kootenay coalfields.

PEACE RIVER COALFIELD

Coal deposit locations in the Peace River coalfield are illustrated in Figure 3. These coals occupy a stratigraphic interval of over 3000 metres and are found in four different formations, three of which are shown schematically in Figure 4. Lower Cretaceous Gething and Gates formations contain the major coal resources of the region. Minor coal occurrences have been investigated by exploration companies in the Jurassic-Cretaceous Minnes Group and also in the Upper Cretaceous Wapiti Formation (not shown in Figure 4). The Peace River coalfield proper occurs in the Inner Foothills of the Rocky Mountains from north of the Peace River south to the Alberta British Columbia border. Coals of the Wapiti Formation are not in what has been traditionally known as the Peace River coalfield, but occur in the closely associated Outer Foothills and Alberta syncline structural zones. All major coals in the coalfield are closely associated with marine shorelines and within any formation the marine influence on coal seams may vary with stratigraphic and lateral position; this influence is best reflected in elevated sulphur values (see section on coal quality of the Peace River coalfield).

Minnes Group coals are present throughout the coalfield but so far have not proved to be as economically attractive as those in the overlying Gates and Gething formations. Minnes coal seams tend to be thin.

Gething Formation coals form a significant portion of the resource base of the coalfield, and the Gething Formation is coal bearing throughout. There has been minor production from this formation, but at present it is

EAST KOOTENAY COALFIELDS

Figure 5. Location of properties in the East Kootenay coalfields.

Figure 6. Schematic stratigraphic sections of the Mist Mountain Formation in the East Kootenay coalfields, showing relative coal seam positions and thicknesses.

not a producer. Formation thickness varies from about 100 metres at the Alberta British Columbia border in the south to over 1000 metres at Carbon Creek in the north. In the Sukunka to Quintette region an upper member of the Gething Formation contains several major coal seams (Legun, 1990). This member pinches out just north of the Sukunka deposit (Figure 4). North of Sukunka the coals are located in the major body of the Gething Formation only, with the major coal development being near the top of the formation. At Carbon Creek more than 100 coal seams have been identified, but individual seams rarely exceed 3 metres in thickness (Legun, 1988).

Current coal production in the coalfield is from the Gates Formation. Coals of this interval are usually thick and continuous. They form the major coal resource of the coalfield from the Bullmoose area south to the Alberta border. Formation thickness decreases from about 350 metres at the Alberta border to about 60 metres at Peace River (Figure 4). Important coal seams are present in the formation from the south extreme to just north of the Bullmoose mine, where they thin and the formation becomes mainly marine and barren of coal.

Wapiti Formation coal occurs principally at the base of the formation where seam thickness may reach 2 metres.

The Peace River coalfield lies mainly in the Inner Foothills of the Rocky Mountains. Folding and thrust faulting are common within the coal deposits of the belt. Structural complications within deposits may range from simple to extreme. In some locations multiple fault repeats have substantially increased seam thickness. Coals in the Wapiti Formation are not part of the Inner Foothills belt and are relatively unaffected by structural complications.

EAST KOOTENAY COALFIELDS

The distribution of coal deposits in the East Kootenay coalfields of southeastern British Columbia is shown in Figure 5. Three structurally separate coalfields are recognized: the Elk Valley, Crowsnest and Flathead coalfields. A summary of the geology of the region's coal resources is provided in Grieve (1985).

The Mist Mountain Formation of the Jurassic-Cretaceous Kootenay Group contains essentially all the economic coals in this region. Figure 6 shows generalized sections of the Mist Mountain Formation at selected locations. The formation averages 500 metres in thickness in southeastern British Columbia, with a range from less than 200 to greater than 600 metres. Individual seams range from less than 1 to greater than 15 metres in thickness, and cumulatively they comprise between 8 and 12 per cent of the total stratigraphic thickness of the formation at most locations. The seam numbers and names included in Figure 6 apply only to the sections where they are plotted. As a rule, correlation of individual coal seams on a regional basis is not possible in the East Kootenay coalfields. A potential exception to this rule is the significant coal zone which occurs at or near the base of the formation at most locations throughout southeast British Columbia. Examples of this include 5-seam at Sage Creek, the Mammoth seam at Byron Creek Collieries, and 10A and 10B seams at Line Creek. Marine influence is generally not evident within the Mist Mountain Formation.

The East Kootenay coalfields are within the Front Ranges of the Rocky Mountains, a structural province characterized by thrust faults and folds. The distribution and shape of the coalfields are controlled by these fea-

Figure 7. Location of Tertiary coal deposits in the Southern Interior region of British Columbia.

tures, with large synclines forming the major structures in the Crowsnest and Elk Valley coalfields. Because of the structural setting, most areas contain strata which are moderately to steeply dipping, and which are affected by faulting. These deformational features are important factors in mine planning, but are usually not insurmountable, and are often advantageous, especially in cases where coal seams are tectonically thickened. An example is the Mammoth or Number 1 seam at Byron Creek Collieries, which has been thickened by thrust faulting.

HAT CREEK COALFIELD

Coal deposits in the Hat Creek coalfield (Figure 7) occur in the Hat Creek Coal Formation of the Eocene Kamloops Group. The best known part of the Hat Creek coalfield is the so-called Number 1 deposit at the north end of the coal basin, which was extensively explored during the 1970s by B.C. Hydro and Power Authority. The coal measures in the Number 1 deposit are approximately 350 to 560 metres thick, and have been subdivided into four coal zones and two rock zones (Kim, 1985). Only one of the coal zones, however, the D-zone, is devoid of rock partings, and so the bulk of the deposit is composed of thinly interbedded coal and rock. This is reflected in the high ash content of Hat Creek coal, which will be discussed in the next section. Nonetheless, the Hat Creek deposits contain one of the thickest coal sections in the world.

The Hat Creek deposits occupy a north-trending graben (Church, 1977), which is affected by later easttrending normal faults.

MERRITT COALFIELD

Coal measures at Merritt occupy a depression in Triassic volcanic rocks (White, 1947), roughly 11 by 5 kilometres in area (Figure 7). Other separate coal-bearing basins occur in the vicinity, including the deposits on Quilchena Creek, 20 kilometres to the east.

The coal deposits near Merritt are assigned to the Coldwater beds of the Eocene Kamloops Group. The stratigraphy of the coal measures appears to be highly variable. Between five and eight coal seams occur within 230 metres of strata at a former mine area known as Coal Gully (White, 1947). At an adjacent mine area known as Coldwater Hill six coal seams are contained in 140 metres of section. Thickness of individual coal seams ranges up to 4.5 metres (White, 1947).

Structure of the Merritt coalfield is also variable. Steep dips associated with tight, southeast-plunging folds are found in the Coal Gully area, although other parts of the coalfield are characterized by moderate southwest dips (Cockfield, 1948).

SIMILKAMEEN COALFIELD

TULAMEEN BASIN

The Tulameen basin is the smaller of two separate basins in the Similkameen coalfield (Figure 7). It is elliptical in shape and covers approximately 20 square kilometres.

The coal in the Tulameen basin is contained in the 130-metre-thick middle member of the Allenby Formation of the Eocene Princeton Group. Only two coal seams of significant thickness are found in the basin, and even these are well developed only along the western edge. In this area the lower seam averages about 7 metres in thickness, while the upper or main seam is 15 to 20 metres thick (Williams and Ross, 1979). They are separated by 20 to 25 metres of mudstone.

The major structure of the Tulameen basin is a southcast-plunging open syncline. The basin is affected by high-angle normal faults, and in some locations the coal appears to be affected by thrust faulting (Evans, 1985).

PRINCETON BASIN

Coal of workable thickness occurs in the southern half of the Princeton basin only, and is contained in the so-called coal-bearing member of the Allenby Formation of the Eocene Princeton Group (McMechan, 1983). A total of eight coal seams or zones has been documented in the member, although no more than five or six occur at any one location. The overall stratigraphic thickness of the member exceeds 1000 metres. Correlation of seams is extremely difficult because of facies changes. The basal coal zone of the member, known as the Princeton-Black-Blue Flame zone (McMechan, 1983), is the thickest and was the most significant producer. Its thickness is highly variable, ranging from 2 to 15 metres; the number of rock partings it contains is fairly high at most locations.

The Princeton basin is a half graben with a major normal fault along its eastern margin (McMechan, 1983). Strata have been deformed into broad, open, east to southeast-trending folds. Small-scale normal and reverse faults are common throughout the basin.

VANCOUVER ISLAND COALFIELDS

Vancouver Island coals dealt with in this report occur in two separate coalfields, the Comox coalfield in the north, and the Nanaimo coalfield in the south (Figure 8). All Vancouver Island coals are contained within the Upper Cretaceous Nanaimo Group, although the Nanaimo coals are younger than those of the Comox coalfield.

The main structures of the Vancouver Island coalfields can be summarized as gently warped and tilted fault blocks (Muller and Atchison, 1971). Most fault blocks are tilted and downthrown to the northeast along

Figure 8. Location of the Comox and Nanaimo coalfields on Vancouver Island.

northwest-trending faults. Faults in the Nanaimo coalfield are more closely spaced and have greater displacement than those in the Comox coalfield.

COMOX COALFIELD

The Cumberland and Dunsmuir members of the Comox Formation host the coals of the Comox coalfield (Bickford and Kenyon, 1988). All past and current production is from the Cumberland member only. Its characteristics are quite variable, although it generally contains from one to four coal seams or zones, with the thickest individual seam being about 3.5 metres thick. At the operating Quinsam Coal mine, west of Campbell River (Figure 8), the 2.4 to 4.0-metre-thick coal bed No. 1, from the basal Cumberland member, is being mined (Kenyon *et al.*, 1991). Coals of the Dunsmiur member tend to be thin.

NANAIMO COALFIELD

In the Nanaimo coalfield, coals are found in the Northfield member of the Extension Formation, the Newcastle member of the Pender Formation, and in the Reserve member of the Protection Formation (Bickford and Kenyon, 1988). The Extension Formation hosts the Wellington and the Little Wellington (No. 2) coal beds, which have average thicknesses of 2.5 and 0.5 metres respectively. Both have contributed to coal production in the Nanaimo area. The Pender Formation hosts the formerly productive Newcastle and Douglas coal beds. Their average thicknesses are 1.0 and 3.0 metres, respectively. There has been no production of coal from the Protection Formation.

TELKWA DEPOSIT

The Telkwa deposit is one of a number of coal-bearing sedimentary deposits of different ages in the Smithers-Hazelton area in northwestern British Columbia (Figure 9), referred to collectively as the Telkwa coalfield. It is hosted by the lower part of the Lower Cretaceous Skeena Group (Palsgrove and Bustin, 1991).

The Telkwa coal measures are 400 metres-thick contain coal in two distinct sequences (Schroeter et al., 1986). The lower sequence includes up to four coal seams with an aggregate thickness of 2 to 12 metres and which individually range from 1 to 6 metres in thickness. Its overall thickness ranges from 2 to 40 metres. The upper sequence contains up to 15 coal seams, with individual thicknesses ranging between 1 and 5 metres and having an aggregate thickness of up to 26 metres. Its overall thickness varies from 20 to 170 metres. Quality reported in this catalog represents coals in the proposed Crows Nest Resources mine plan, which are part of the upper coal sequence. They are numbered sequentially upward from 1 to 10.

The Telkwa coal deposit is characterized by highangle faulting (Schroeter et al., 1986). Faults trend predominantly northwesterly, and are of both normal and reverse types. Telkwa coal measures are generally preserved in graben structures formed by these faults, and are influenced by broad, open folds and tend to have shallow northeast or southwest dips.

KLAPPAN COALFIELD

The Klappan coalfield and the adjacent Groundhog coalfield are near the north end of the Bowser basin of northwestern British Columbia (Figure 9). The hostrocks are the Jurassic-Cretaceous Bowser Lake Group, and major coal seams at Klappan occur in the Upper Jurassic Currier Formation (MacLeod and Hills, 1990). It contains up to 25 coal seams, which range from 0.5 to 5.0 metres or more in thickness. Seams are given letter designations, and are numbered upward from A at the base.

Two phases of deformation have affected the strata of the Mount Klappan area (Moffat and Bustin, 1984). The first phase involved northwest-trending folds and minor thrust faults. These structures were later deformed by broad, open, northeast-trending folds and flat-lying thrust faults.

BOWRON RIVER COALFIELD

The Bowron River coalfield occupies a northwesterly trending elongate basin about 25 kilometres in length which lies 45 kilometres east of Prince George (Figure 3). Coal deposits occur in the lower portion of an unnamed Tertiary (late Paleocene or younger) sequence, that may be up to 700 metres thick (Smith, 1989). The coal zone, which is up to 35 metres thick, contains an aggregate of 12 metres of coal, in lenticular seams which attain thicknesses of 1.5 to 3.5 metres.

The structure of the coalfield is an asymetric graben; strata dip moderately to the northeast (Smith, 1989). There is significant folding and faulting of the coal measures occurs within the basin.

QUALITY OF BRITISH COLUMBIA COALS

The characteristics of specific British Columbia coalmine products are listed in Appendix 1, while quality parameters of individual coal seams from the main coalfields and basins in British Columbia, excluding active mine properties, are listed in Appendix 2. Data in Appendix 1 were contributed by the mines, while the data in Appendix 2 were collected mainly from assessment reports. Also included in this section are graphs showing the relationship between calorific value and ash content for certain coalfields, based on data in Appendix 2. Graphs showing the relationship between vitrinite reflectance and volatile matter (daf) for the Peace River, East Kootenay and Klappan coalfields are also included in this section. Data in these graphs comes from assessment reports, but most are not contained in Appendix 2.

PEACE RIVER COALFIELD

Coal quality in the Peace River coalfield spans a significant range of values due to varied stratigraphic positions and thermal maturation histories. Rank of coals ranges from low-volatile bituminous to high-volatile bituminous C. Within the disturbed belt, coal ranks generally tend to decrease towards the mountains due to the initiation sequence of thrusting, which was from west to east (Kalkreuth and McMechan, 1988). As the strata being displaced by thrusting were raised, coalification slowed or ceased relative to equivalent unfaulted strata.

Starting with the oldest coals in the region, Minnes Group coal seams range in rank from high to low-volatile bituminous. Values in Appendix 2, which represent samples from the Monkman property, are low-volatile, higher rank than Gething and Gates Formation coals on the same property. Their ash contents are low (4 out of 5 samples have less than 12 per cent raw ash, air-dried), as are their sulphur contents (all samples with less than or equal to 0.5 per cent sulphur).

Gething Formation coals are of economic interest primarily from the Peace River to the Sukunka River (Figure 4). The rank of Gething Formation coals within this area, based on proximate analysis and vitrinite reflectance of samples in Appendix 2, ranges from low-volatile to high-volatile A bituminous. Lowest ranks occur in the upper part of the formation at Carbon Creek, while the highest ranks occur on the Burnt River property. Farther south, Gething Formation coals on the Monkman property appear to be near the boundary between medium and low-volatile in rank. Figure 10 shows the correlation between vitrinite reflectance (R_{max}) and volatile matter (daf) for clean Gething Formation coals (r = -0.89). The degree of scatter of the data in this graph (and also the similar graphs in Figures 12 and 14) is primarily due to factors other than rank, such as maceral composition and nature of mineral matter, which influence volatile matter contents. Moreover, there can be significant variations in reflectance reading results between different petrographic labs.

Ash values (air-dried) of raw Gething Formation samples included in Appendix 2 range from less than 5 to greater than 36 per cent, and average 14.2 per cent. Free swelling index (FSI) values on these same raw coals range up to 8.5, with an average of less than 4; the most commonly occurring value is 1.5. Calorific values (air-dried) on raw Gething Formation coals included in Appendix 2 range from 21.23 to 33.69 megajoules per kilogram, and average 29.75. There is a strong negative correlation (r = -0.94) between calorific value and ash content in raw coals (Figure 11), so that ash content is the main factor influencing heat content. Hardgrove grindability index (HGI) values in the raw Gething coals range from 47 to 87, with a mean of 59. Values of sulphur given in Appendix 2 are highly variable, with a range in raw, air-dried samples of 0.24 to 2.49 per cent, and an average of 0.79 per cent. However, 80 per cent of these samples have sulpur contents of 0.75 per cent and lower. The highest sulphur values are associated with seams in close proximity to marine strata, including the Bird seam, which is almost directly overlain by the marine Moosebar Formation (Figure 4). Vitrinite contents in the raw and clean coals combined (8 samples total) range from 28.7 to 86.5 per cent and average 52.0 per cent.

Gates Formation coals are presently being produced from the Bullmoose and Quintette deposits. These coals produce an excellent low-sulphur metallurgical product. Oxidized portions of these seams are mined and sold as low-sulphur thermal coals. Mine products include lowsulphur, medium-volatile metallurgical coals (Appendix 1) and thermal coals.

The rank of raw Gates Formation coals, based on proximate and vitrinite reflectance analysis of samples included in Appendix 2, is mainly medium-volatile bituminous. Some high-volatile A and low-volatile bituminous coals are also included; the latter all occur on the Belcourt property. The correlation between vitrinite reflectance (R_{max}) and volatile matter (daf) for clean Gates Formation coals is shown in Figure 12 (r = -0.85). Ash values (air-dried) of raw Gates Formation samples included in Appendix 2 range from less than 5 to greater than 46 per cent, and average 18.8 per cent. Free swelling index values on these same raw coals range up to 8.5, with an average of less than 5.5; the most commonly occurring

Figure 10. Relationship between volatile matter (daf) and mean maximum vitrinite reflectance for clean coals of the Gething Formation in the Peace River coalfield. All data are from assessment reports.

Killex (**)

Peace River - Gates Formation

Figure 13. Relationship between calorific value and ash content (air-dried) for raw coals of the Gates Formation in the Peace River coalfield. All data are contained in Appendix 2.

Figure 14. Relationship between volatile matter (daf) and mean maximum vitrinite reflectance for clean coals of the East Kootenay coalfields. All data are from assessment reports.

value is 4. Calorific values on raw coals (air-dried) range from 22.78 to 31.04 megajoules per kilogram, and average 27.83 (six samples only). There is a strong negative correlation (r = -0.99) between calorific value and ash content in raw Gates Formation coals (Figure 13), so that ash content is the main determinant of heat content. Hardgrove index values in the raw Gates coals range from 64 to 98, with a mean of 79. Values of sulphur (air-dried, raw) in Appendix 2 range from 0.21 to 0.78 per cent, with a mean of 0.45. Sixty-five per cent of the samples have sulphur contents less than 0.5 per cent. Vitrinite contents in the clean Gates Formation coals range from 33.0 to 70.3 per cent, and average 57.6 per cent.

Wapiti Formation coals investigated to date occur at one stratigraphic horizon, within a few metres of the formation base. On the basis of calorific value (moist, mineral matter-free) of values in Appendix 2, rank of Wapati coal is high-volatile bituminous C. Ash values (air-dried) are in excess of 20 per cent, and sulphur values are low. Hardgrove index values indicate a relatively hard coal.

EAST KOOTENAY COALFIELDS

The East Kootenay coalfields of southeastern British Columbia contain coals which range in rank from highvolatile B to low-volatile bituminous. Rank of any given seam is dependent on stratigraphic position, structural position and geographic location. The influence of stratigraphic position is compounded, when classifying rank by volatile matter content, by a general up-section increase in reactive maceral contents (Cameron, 1972). Structural position influences rank because of the importance of post and/or syn-Laramide coalification (Pearson and Grieve, 1985; Grieve, 1991). Geographic location influences rank through the effect of regional rank variations.

Example product characteristics (Appendix 1) include metallurgical, semi-coking and thermal coals. Most are medium-volatile in rank, although one high-volatile coking coal is currently produced. All product coals from southeast British Columbia are low in sulphur.

Based on proximate and petrographic analysis of raw samples included in Appendix 2, coal rank in the East Kootenay coalfields ranges from high-volatile A to lowvolatile bituminous. Of those properties listed in Appendix 2, the Elk River property and Parcel 82 of the Dominion Coal Block have the greatest proportion of low-volatile coals (high rank), while the Hosmer-Wheeler property and adjacent Parcel 73 of the Dominion Coal Block have the greatest proportion of high-volatile coals. Figure 14 displays the correlations between vitrinite reflectance (R_{max}) and volatile matter (daf) for clean Mist Mountain Formation coals (r = -0.93). Ash values (airdried) of raw samples included in Appendix 2 range from less than 6.5 to greater than 37 per cent, and average 20.4 per cent. The FSI values on these same raw coals range

Ministry of Energy, Mines and Petroleum Resources

Hat Creek

Figure 16. Relationship between calorific value and ash content (dry basis) for raw coals of the Hat Creek Number 1 deposit. All data are contained in Appendix 2.

up to 8.5, with a mean of 4.0; the most commonly occurring value is 2.5. Calorific values (dry) on the raw East Kootenay coals range from 20.26 to 29.13 megajoules per kilogram, with a mean of 24.36. There is a strong negative correlation (r = -0.99) between calorific value and ash content in raw coals (Figure 15), implying that ash content is the main factor determining heating value. The HGI values in the raw coals range from 74 to 112, with a mean of 92. Values of raw sulphur (dry basis) in Appendix 2 range from 0.36 to 0.95 per cent, with an average of 0.57. Half of the samples have sulphur values less than 0.5 per cent. Vitrinite contents in the clean coals range from 31 to 86.9 per cent, with a mean of 59 per cent. On average, vitrinite contents tend to increase up-section (Cameron, 1972).

HAT CREEK COALFIELD

Rank of coals in the Hat Creek coalfield ranges from lignite to sub-bituminous (Smith, 1989; Goodarzi, 1985). Ash contents of Hat Creek coal are relatively high; for example, ash in the seven raw samples included in Appendix 2 ranges from 26.0 to 51.8 per cent (dry basis), with a mean of 36.2. Calorific values (dry basis) of the raw samples in Appendix 2 range from 11.45 to 21.42 megajoules per kilogram, with a mean of 17.34. There is a strong negative correlation (r = -0.999) between calorific value and ash (Figure 16), so that ash is the main determinant of heat content of Hat Creek coal. One HGI value of 58 is included. Sulphur values (dry basis) are low, with a range of 0.23 to 0.79 per cent.

MERRITT COALFIELD

Rank of coals in the Merritt coalfield ranges from high-volatile A to high-volatile C bituminous (Smith, 1989). Based on calorific value (maf) and reflectance, the nine clean samples listed in Appendix 2 are mainly highvolatile A in rank. The FSI values range from 1.5 to 7.5, with a mean and mode of 3. Calorific values (air-dried) of the clean samples in Appendix 2 range from 30.03 to 34.17 megajoules per kilogram, with a mean of 31.12. Sulphur values in Merritt clean coals (Appendix 2) range from 0.49 to 0.83 per cent, with a mean of 0.67 per cent, with six of the nine samples having sulphur values between 0.5 and 0.75 per cent. There are only two petrographic analyses in Appendix 2, but these suggest that at least some Merritt coals are vitrinite rich.

SIMILKAMEEN COALFIELD

TULAMEEN BASIN

Rank of coals in the Tulameen basin ranges from high-volatile C to high-volatile B bituminous (Williams and Ross, 1979), although vitrinite reflectance values as high 0.86 per cent (high-volatile A) have been reported. The three raw coal samples in Appendix 2, however, have calorific values (maf) typical of high-volatile C coals. These same samples have ash contents (air-dried) ranging from 33.9 to 46.7 per cent. Air-dried calorific values range form 14.79 to 17.98 megajoules per kilogram. The HGI values are less than 50, indicating a hard coal. Sulphur values range from 0.42 to 0.66 per cent.

PRINCETON BASIN

Coal rank in the Princeton basin ranges from lignite to high-volatile B bituminous, with most of the former production from the sub-bituminous A to high-volatile C bituminous category (Smith, 1989). The two examples cited in Appendix 2 represent mine-run coal from two separate scams and collieries. Their rank appears to be sub-bituminous, based on calorific values (maf). Their ash values are low, moisture contents are high, and sulphur values are low.

VANCOUVER ISLAND COALFIELDS

COMOX COALFIELD

The Comox coalfield contains coals predominantly of high-volatile A and B bituminous rank (Smith, 1989), although local occurrences of coal of much higher rank, related to igneous activity, are known (Kenyon and Bickford, 1989). Values of calorific value (maf) in Appendix 2 confirm the general rank range. Quinsam coal product is a high-volatile thermal coal with 13.5 per cent ash and 1.0 per cent sulphur (Appendix 1).

The average ash content (air-dried) of the four raw coal samples from the Chute Creek exploration property that are in Appendix 2 is 24.8 per cent. The calorific values of the same four samples range from 18.69 to 25.60 kilojoules per kilogram. Sulphur values of the four Chute Creek samples range from low (0.47 per cent) to high (2.97 per cent).

NANAIMO COALFIELD

The Nanaimo coalfield contains coals of high-volatile A and B bituminous rank (Smith, 1989; Kenyon and Bickford, 1989). Four of the five values cited in Appendix 2 represent four formerly productive seams, while the fifth set represents raw analyses for one seam, possibly the Wellington seam, on the Wolf Mountain exploration property. Calorific values (maf) for these five coals, together with vitrinite reflectance of the Wolf Mountain sample, confirm the rank range given above. Ash values (air-dried) of the five samples in Appendix 2 range from 10.5 to 19.3 per cent. Air-dried calorific values range from 26.38 to 28.19 megajoules per kilogram, and air-dried sulphur values range from 0.42 to 1.12 per cent. The vitrinite content of the Wolf Mountain sample is high (73.5 per cent, raw basis).

Figure 17. Relationship between calorific value and ash content (air-dried) for coals of the Telkwa deposit. All data are contained in Appendix 2, and represent weighted averages for each coal seam.

Figure 18. Relationship between volatile matter (daf) and mean maximum vitrinite reflectance for raw coals of the Peace River, East Kootenay and Klappan coalfields. All data are from assessment reports. Solid dots represent Klappan coals.

Figure 19. Relationship between calorific value and ash content (air-dried) for coals of the Klappan coalfield. All data are contained in Appendix 2.

TELKWA DEPOSIT

Data from the Telkwa deposit cited in Appendix 2 represent weighted averages of raw coal drill-core of each of seams 1 to 10. Based on proximate and calorific value determinations listed in Appendix 2, Telkwa coals are high-volatile A in rank. Ash values in these raw coals range from 16.0 to 25.1 per cent, with a mean of 19.7 per cent. Values of FSI range from 1.0 to 3.5, with a mean of 1.5 and a mode of 1.0. Calorific values in raw coal (airdried) range from 24.13 to 28.87 megajoules per kilogram, with a mean of 26.84. Calorific value is inversely proportional (r = -0.92) to ash content (Figure 17). Sulphur values in Telkwa clean coals in Appendix 2 (air-dried), range from 0.65 to 2.07 per cent, with a mean of 1.17 per cent. Half of the samples have sulphur values less than 1 per cent.

KLAPPAN COALFIELD

Coals in the Klappan coalfield which are listed in Appendix 2, representing the Hobbit-Broatch and Lost-Fox deposits in the Mount Klappan area, are anthracitic in rank, based on vitrinite reflectance analysis. Variation of volatile matter (dry, ash-free) with vitrinite reflectance in raw Klappan coals is shown in Figure 18, together with the variation in the same parameters in raw Peace River and East Kootenay coals, for comparison. Raw ash congreater than 42 per cent, with a mean of 29.5 per cent. Raw calorific value (air-dried) ranges from 18.09 to 29.56 megajoules per kilogram, with a mean of 23.41. Calorific value is inversely related (r = -0.99) to ash content (Figure 19), suggesting that ash content is the main factor controlling heat content of Klappan coals. The HGI values on raw coals range from 40 to 79, with a mean of 54. Sulphur values on raw coals range from 0.33 to 3.05 per cent, with a mean of 0.70 per cent. Over 70 per cent of the samples have sulphur values less than 0.75 per cent. Vitrinite contents of two of the samples from the Hobbit-Broatch area are in the neighbourhood of 50 per cent (raw basis).

tents (air-dried) in Appendix 2 range from less than 14 to

BOWRON RIVER COALFIELD

Rank of Bowron River coals is in the high-volatile C and B bituminous range. Moist, ash-free calorific values (Appendix 2) confirm this. Values of ash in raw coals included in Appendix 2 range from 23.65 to 33.36 per cent (air-dried). Calorific values (also air-dried) range from 19.33 to 23.12 kilojoules per kilogram. Calorific value appears to increase with decreasing ash content. The HGI value of the one raw bulk sample included in Appendix 2 is 58. Sulphur values on the three raw core samples in Appendix 2 range from 1.11 to 1.22 per cent (air-dried).

Information Circular 1992-20

REFERENCES

- American Society for Testing and Materials (1984): Classification of Coals by Rank, ASTM D388-84; American Society for Testing and Materials, Philadelphia, 6 pages.
- Bickford, C.G.C. and Kenyon, C. (1988): Coalifield Geology of Eastern Vancouver Island (92F); in Geological Fieldwork, 1987, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1988-1, pages 441-450.
- Bustin, R.M., Cameron, A.R., Grieve, D.A. and Kalkreuth, W.D. (1985): Coal Petrology - Its Principles, Methods and Applications; *Geological Association of Canada*, Short Course Notes, Volume 3, 230 pages.
- Cameron, A.R. (1972): Petrology of Kootenay Coals in the Upper Elk River and Crowsnest Areas, British Columbia and Alberta; in Proceedings, First Geological Conference on Western Canadian Coal, Alberta Research Council, Information Series, 60, pages 31-42.
- Cameron, A.R. (1989): Relationships of Petrographic and Chemical Parameters in Coal Rank Evaluation for Western Canadian Coals; in Advances in Western Canadian Coal Geoscience, Alberta Research Council, Information Series, 103, pages 225-232.
- Carpenter, A.M. (1988): Coal Classification; International Energy Agency Coal Research, IEACR/12, 104 pages.
- Church, B.N. (1977): Geology of the Hat Creek Coal Basin; in Geology in British Columbia 1975, B.C. Ministry of Energy, Mines and Petroleum Resources, pages G99-G118.
- Cockfield, W.E. (1948): Geology and Mineral Deposits of Nicola Map-area, British Columbia; Geological Survey of Canada, Memoir 249, 158 pages.
- Dickson, J. (1941): Analyses of British Columbia Coals; B.C. Ministry of Energy, Mines and Petroleum Resources, Bulletin 14, 23 pages.
- Evans, S.H. (1985?): Geology of the Tulameen Coal Basin (92H/10); in Geology in British Columbia, 1977-1981, B.C. Ministry of Energy, Mines and Petroleum Resources, pages 76-88.
- Grieve, D.A. (1985): Coalfields of the East Kootenay Region, Southeastern British Columbia; in Coal in Canada, Canadian Institute of Mining and Metallurgy, Special Volume 31, pages 203-211.
- Goodarzi, F. (1985): Organic Petrology of the Hat Creek Coal Deposit No. 1, British Columbia; International Journal of Coal Geology, Volume 5, pages 377-396.
- Grieve, D.A. (in press): Biaxial Vitrinite Reflectance in Coals of the Elk Valley Coalfield, Southeastern British Columbia, Canada; International Journal of Coal Geology.
- Kalkreuth, W. and McMechan, M. (1988): Burial History and Thermal Maturity, Rocky Mountain Front Ranges, Foothills and Foreland, East-central British Columbia and Adjacent Alberta, Canada; American Association of Petroleum Geologists, Volume 72, pages 1395-1410.
- Kenyon, C. and Bickford, C.G.C. (1989): Vitrinite Reflectance Study of Nanaimo Group Coals of Vancouver Island (92F); B.C. Ministry of Energy, Mines and Petroleum Re-

sources, Geological Fieldwork, 1988, Paper 1989-1, pages 543 to 552.

- Kenyon, C., Cathyl-Bickford, C.G. and Hoffman, G. (1991): Quinsam and Chute Creek Coal Deposits (NTS 92F/13 and 14); B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1991-3.
- Kim, H. (1985): Depositional Environment and Stratigraphic Subdivision - Hat Creek No. 1 Deposit, British Columbia; in Coal in Canada, Canadian Institute of Mining and Metallurgy, Special Volume 31, pages 278-284.
- Legun, A.S. (1988): Geology and Coal Resources of the Carbon Creek Map Area, Peace River District; B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1988-3, 33 pages.
- Legun, A.S. (1990): Stratigraphic Trends in the Gething Formation; B.C. Ministry of Energy, Mines and Petroleum Resources, Open File 1990-33.
- MacLeod, S.E. and Hills, L.V. (1990): Conformable Late Jurassic (Oxfordian) to Early Cretaceous Strata, Northern Bowser Basin, British Columbia: A Sedimentological and Paleontological Model; Canadian Journal of Earth Sciences, Volume 27, pages 988-998.
- McMechan, R.D. (1983): Geology of the Princeton Basin; B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1983-3, 52 pages.
- Moffat, I.W. and Bustin, R.M. (1984): Superposed Folding in the Northern Groundhog Coalfield - Evidence for Polyphase Deformation in the Northeastern Corner of the Bowser Basin; in Current Research, Part B, Geological Survey of Canada, Paper 84-1B, pages 255-261.
- Muller, J.E. and Atchison, M.E. (1971): Geology, History and Potential of Vancouver Island Coal Deposits; *Geological* Survey of Canada, Paper 70-53, 50 pages.
- Palsgrove, R.J. and Bustin, R.M. (1991): Stratigraphy, Sedimentology and Coal Quality of the Lower Skeena Group, Telkwa Coalfield, Central British Columbia, NTS 93L/11; B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1991-2, 59 pages.
- Pearson, D.E. and Grieve, D.A. (1985): Rank Variation, Coalification Pattern and Coal Quality in the Crowsnest Coalfield, British Columbia; Canadian Institute of Mining and Metallurgy, Buletin, Volume 78, pages 39-46.
- Price, J.T. and Gransden, J.F. (1987): Metallurgical Coals in Canada: Resources, Research and Utilization; CANMET, Report 87-2E, 71 pages.
- Schroeter, T.G., White, G.W. and Koo, J. (1986): Coal in Northwestern British Columbia - An Overview, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1986-5, 28 pages.
- Sinclair, A.J. (1977): Evaluation of Analytical Data from Test Holes 76-135 and 76-136, Hat Creek No. 1 Coal Deposit; unpublished company report, BC Hydro and Power Authority.
- Smith, G.G. (1989): Coal Resources of Canada; Geological Survey of Canada, Paper 89-4, 146 pages.

- Todd, A.H.J. (1982): Lexicon of Terms Relating to the Assessment and Classification of Coal Resources; International Energy Agency Coal Research, Graham and Trotman Limited, London, 136 pages.
- Ward, C.R., Editor, (1984): Coal Geology and Coal Technology; Blackwell Scientific Publications Ltd., 345 pages.
- White, W.H. (1947): Report on the Merritt Coalfield; B.C. Ministry of Energy, Mines and Petroleum Resources, Report of the Minister of Mines, 1946, pages A250-A279.
- Williams, V.E. and Ross, C.A. (1979): Depositional Setting and Coal Petrology of Tulameen Coalfield, South-central British Columbia; American Association of Petroleum Geologists, Bulletin, Volume 63, pages 2058-2069.Figure captions

Ministry of Energy, Mines and Petroleum Resources

APPENDICES

British Columbia

APPENDIX 1

QUALITY OF BRITISH COLUMBIA COALS (MINE PRODUCTS)

LIST OF ABBREVIATIONS:

FSI - Free swelling index HGI - Hardgrove grindability index

Listed in alphabetical order by property name. All data submitted by mining companies, British Columbia

PROPERTY: BALMER Region: East Kootenay Company: Westar Mining Ltd. Product name or designation: Balmer Met Utilization: coke making

Proximate analysis Basis of reporting: air dried Moisture: 1.5% Ash: 9.5 (0.5% tolerance) Volatile matter: 21.0-24.0% Fixed Carbon: 68.0-65.0%

Calorific value: 32.0 MJ/kg 7650 kcal/kg 13,800 BTU/lb Basis of reporting: gross air dried

Ultimate analysis Basis of reporting: dry Carbon: 82.00% Hydrogen: 4.48% Nitrogen: 1.10% Sulphur: 0.40% Oxygen: 2.32%

FSI: 6-8

HGI: 80-100

Partial ash analysis SiO₂: 63.2% Al₂O₃: 27.7% Fe₂O₃: 2.5% MgO: 0.4% CaO: 1.9% Na₂O: 0.1% K₂O: 0.5% P₂O₅: 0.8%

Other information: base/acid ratio 0.058

PROPERTY: BALMER Region: East Kootenay Company: Westar Mining Ltd. Product name or designation: Balmer Thermal Utilization: thermal

Proximate analysis Basis of reporting: air dried Moisture: 1.5% Ash: % Volatile matter: 19.5-23.5% Fixed Carbon: 63.0-59.0%

Calorific value: 28.5 MJ/kg 6800 kcal/kg 12,200 BTU/lb Basis of reporting: gross air dried

Ultimate analysis Basis of reporting: dry Carbon: 73.10% Hydrogen: 4.25% Nitrogen: 1.12% Sulphur: 0.51% Oxygen: 4.74%

HGI: 90-100

Partial ash analysis SiO₂: 61.0% Al₂O₃: 27.3% Fe₂O₃: 2.9% MgO: 0.9% CaO: 2.6% Na₂O: 0.1% K₂O: 0.8% P₂O₅: 0.7%

Other information: base/acid ratio 0.081

PROPERTY: COAL MOUNTAIN COAL Region: East Kootenay Company: Byron Creek Collieries Product name or designation: Thermal Utilization: thermal power generation (domestic and export); smelting

Proximate analysis Basis of reporting: as shipped Moisture: 8.0% Ash: 15.1% Volatile matter: 22.6% Fixed Carbon: 54.3%

Calorific value: 26.7 MJ/kg 6370 kcal/kg 11,500 BTU/lb Basis of reporting: as shipped

Ultimate analysis Basis of reporting: as shipped Carbon: 66.3% Hydrogen: 3.7% Nitrogen: 0.6% Sulphur: 0.3% Oxygen: 5.96%

FSI: 1.5-2 HGI: 78

Partial ash analysis SiO₂: 51.4% Al₂O₃: 32.5% Fe₂O₃: 2.8% MgO: 1.2% CaO: 5.3% Na₂O: 1.0% K₂O: 0.5% P₂O₅: 0.4% PROPERTY: COAL MOUNTAIN COAL

Region: East Kootenay Company: Byron Creek Collieries Product name or designation: Weak Coking Coal Utilization: blend in coke making

Proximate analysis Basis of reporting: as shipped Moisture: 8.0% Ash: 11.0% Volatile matter: 21.5% Fixed Carbon: 59.5%

Calorific value: 28.6 MJ/kg 6840 kcal/kg 12.300 BTU/b

Basis of reporting: as shipped Ultimate analysis Basis of reporting: as shipped Sulphur: 0.30% FSI: 2.5-5 HGI: 78

PROPERTY: FORDING RIVER

Region: East Kootenay Company: Fording Coal Limited Product name or designation: Fording River Standard Utilization: coke making

Proximate analysis Basis of reporting: air dried Residual moisture: 1.0% Ash: 9.5 (0.5% tolerance) Volatile matter: 21.0-24.0% Fixed Carbon: 65.5-69.0%

Sulphur: 0.45% maximum

Calorific value: 35.8 MJ/kg 8550 kcal/kg 15,400 BTU/lb

Basis of reporting: dry, ash free

Ultimate analysis Basis of reporting: air dried Carbon: 80.56% Hydrogen: 4.69% Nitrogen: 1.21% Sulphur: 0.40% Oxygen: 3.14%

FSI: 6-8

HGI: 82

Partial ash analysis SiO₂: 58.20% Al₂O₃: 30.58% Fe₂O₃: 3.86% MgO: 0.50% CaO: 1.96% Na₂O: 0.08% K₂O: 0.82% P₂O₅: 1.52%

Other information: base/acid ratio 0.08

PROPERTY: FORDING RIVER

Region: East Kootenay Company: Fording Coal Limited Product name or designation: Fording River Medium Volatile Utilization: coke making

Proximate analysis Basis of reporting: air dried Residual moisture: 1.0% Ash: 8.0 (0.5% tolerance) Volatile matter: 26.0-29.0% Fixed Carbon: 61.0-64.0%

Sulphur: 0.70% maximum

Calorific value: 35.6 MJ/kg 8500 kcal/kg 15,300 BTU/lb Basis of reporting: dry, ash free

Ultimate analysis Basis of reporting: air dried Carbon: 79.70% Hydrogen: 4.78% Nitrogen: 1.42% Sulphur: 0.68% Oxygen: 4.05%

FSI: 6-8

HGI: 78

Partial ash analysis SiO₂: 61.51% Al₂O₃: 27.75% Fe₂O₃: 3.20% MgO: 0.55% CaO: 1.86% Na₂O: 0.07% K₂O: 1.34% P₂O₅: 1.68%

Other information: base/acid ratio 0.07

PROPERTY: FORDING RIVER

Region: East Kootenay Company: Fording Coal Limited Product name or designation: Fording River High Volatile Utilization: coke making

Proximate analysis Basis of reporting: air dried Residual moisture: 1.0% Ash: 6.5 (0.5% tolerance) Volatile matter: 29.0-32.0% Fixed Carbon: 60.0-63.0%

Sulphur: 0.60% maximum

Calorific value: 35.2 MJ/kg 8400 kcal/kg 15,100 BTU/lb Basis of reporting: dry, ash free

Ultimate analysis Basis of reporting: air dried Carbon: 80.34% Hydrogen: 5.15% Nitrogen: 1.40% Sulphur: 0.53% Oxygen: 5.48%

FSI: 6-8

HGI: 68

Partial ash analysis SiO₂: 61.35% Al₂O₃: 26.10% Fe₂O₃: 4.30% MgO: 0.88% CaO: 1.96% Na₂O: 0.09% K₂O: 1.47% P₂O₅: 1.50%

Other information: base/acid ratio 0.11

PROPERTY: GREENHILLS

Region: East Kootenay Company: Westar Mining Ltd. Product name or designation: Greenhills Standard Met Utilization: coke making

Proximate analysis Basis of reporting: air dried Moisture: 1.5% Ash: 7.0% (0.50% tolerance) Volatile matter: 25.5-29.0% Fixed Carbon: 62.5-66.0%

Calorific value: 32.9 MJ/kg 7850 kcal/kg 14,100 BTU/lb Basis of reporting: gross, air dried

Ultimate analysis Basis of reporting: dry Carbon: 81.97% Hydrogen: 4.89% Nitrogen: 1.40% Sulphur: 0.55% Oxygen: 4.03%

FSI: 6-8

HGI: 85-95

Partial ash analysis SiO₂: 56.9% Al₂O₃: 30.5% Fe₂O₃: 4,4% MgO: 0.7% CaO: 2.0% Na₂O: 0.1% K₂O: 0.8% P₂O₅: 2.1%

Other information: dilatation, 40-70; fluidity, 200-600; Ro, 1.00.

PROPERTY: GREENHILLS

Region: East Kootenay Company: Westar Mining Ltd. Product name or designation: Greenhills Thermal Utilization: thermal

Proximate analysis Basis of reporting: air dried Moisture: 1.5% Ash: 16.0% (1% tolerance) Volatile matter: 27.0% (1.5% tolerance) Fixed Carbon: 55.5%

Calorific value: 28.5 MJ/kg 6800 kcal/kg 12,200 BTU/lb Basis of reporting: gross, air dried

Ultimate analysis Basis of reporting: dry Carbon: 72.65% Hydrogen: 4.35% Nitrogen: 1.20% Sulphur: 0.55% Oxygen: 5.25%

FSI: 0-3

HGI: 80-110

Partial ash analysis SiO₂: 57.1% Al₂O₃: 27.8% Fe₂O₃: 6.5% MgO: 0.5% CaO: 2.0% Na₂O: 0.1% K₂O: 1.4% P₂O₅: 1.5% PROPERTY: QUINSAM MINE Region: Vancouver Island Company: Brinco Coal Mining Corporation Product name or designation: Quinsam Coal Utilization: thermal

Proximate analysis Basis of reporting: air dried Moisture: 3.0% (average) Ash: 13.5% Volatile matter: 36.5% Fixed Carbon: 47.0%

Calorific value: 27.2 MJ/kg 6500 kcal/kg 11,700 BTU/lb Basis of reporting: gross air dried

Ultimate analysis Basis of reporting: dry Carbon: 70.1% Hydrogen: 4.6% Nitrogen: 0.9% Sulphur: 1.0% Oxygen: 9.5%

HGI: 48

Partial ash analysis (typical result) SiO₂: 38.5% Al₂O₃: 27.3% Fe₂O₃: 10.7% MgO: 0.3% CaO: 16.6% Na₂O: 0.2% K₂O: 0.1% P₂O₅: 0.6%

British Columbia

PROPERTY: QUINTETTE Region: Peace River Company: Quintette Coal Limited Product name or designation: Quintette Metallurgical Coal Utilization: coke making (Japanese steel industry)

Proximate analysis Basis of reporting: average, air dried Moisture: 0.75% Ash: 9.5% Volatile matter: 22.9% Fixed Carbon: 66.8%

Calorific value: 32.4 MJ/kg 7745 kcal/kg 13,940 BTU/lb Basis of reporting: air dried

Ultimate analysis Basis of reporting: dry Carbon: 82% Hydrogen: 4.3% Nitrogen: 0.8% Sulphur: 0.4% (air dried) Oxygen: 3.0%

FSI: 7 HGI: 82

Partial ash analysis SiO₂: 60% Al₂O₃: 22% Fe₂O₃: 4.5% MgO: 1.5% CaO: 4.0% Na₂O: 0.5% K₂O: 1.2% P₂O₅: 0.75%

APPENDIX 2

QUALITY OF BRITISH COLUMBIA COALS (NON-PRODUCING PROPERTIES)

LIST OF ABBREVIATIONS

DAF		Dry, ash-free basis
FSI	-	Free swelling index
MAB		Moist, ash-free basis
Rmax	-	Mean maximum vitrinite reflectance
A.R.		Assessment report
DM		Drill-hole
AD		Air-dried basis
AR	-	As-received basis
MMMB	-	Moist, mineral matter free basis
CAL.	-	Calorific
VAL.	-	Value

Table	Coalfield or basin	Property	Pit or Area	Reference	Unit	Seam	Sample Type	Cors Recovery (%)	Sample desc.	Moisture (%)	Ash (%)	Volatile metter (%)	Fixed carbon (%)	Beels	Vol. met. (def) (%)	FSI	Raw/ clean
1	Nanaimo	South Wallington	#10 Mine	Dickson	Nanaimo	Doubles			Mine-run	1,00	19,30	25.30	54,40	ad	31.74		
2	Nanaimo	Western Fuel Corp.	#1 Mine	Dickson	Nanaimo	Newcastle			Lump	0.20	10.50	33.50	54.00	ad	38.29		
3	Nanaimo	Rohan Mino	Extension	Dickson	Nanaimo	Wellington			Mine-run	0.60	15.20	31.90	52.30	ad	37.89		
4	Nanaimo	North6ekt Mine	- 1.00001/000400-	Dickson	Nanaimo	Little Wellington			Mine-run	0.80	13.00	34.30	51,90	ad	39.79		
8	Nanaimo	Walf Min.		A.R. 177	Nanaimo	W1 (Wellington?)	Core, raw	91.9	DH-82-02A	2.25	14.89	36.93	45.93	ad	44.57		
6	Comox		#5 Mine	Dickson	Nanaimo	2			Mino-run	1.10	17.60	25.50	55.80	ad	31.37		
7	Comox	Chute Creek		A.R. 701	Nanaimo	A (main)	Core, raw	100.0	DH-85-20	3.53	19.02	32,42	45.03	ad	41.86		
0	Cornox	Chude Crowk		A.R. 701	Nanaimo	B	Core, raw	92.9	DH-85-27	2.75	36.80	28.71	31.74	ad	47.49		
9	Comox	Chute Crack		A.R. 701	Nanaimo	0	Core, raw	100.0	DH-85-26	2.71	19.42	34.03	43.84	ad	43.70		
10	Comox	Chute Creek		A.R. 701	Nanaimo	D	Core, new	100.0	DH-85-27	3.25	24.00	28.02	44.73	ad	38.52		
11	Telkws	Talitan	Goathorn East	A.R. 239	Skeena	1	Core, raw		Weighted avg.	0.84	23.94	24.73	51.32	ad	32.52	3.5	clean
12	Tokwa	Talinez	Goathorn East	A.R. 239	Skeena	2	Core, raw		Weighted avg.	1.09	24.22	25.37	47.56	ad	34,79	1.0	ciean
12	Tellown	Tallows	Goathorn East	A.R. 239	Skeene	ā	Core, raw		Weighted avo.	0.99	25.14	24.10	46.20	ad	34,28	1.0	clean
24	Tellowa	Tallman	Goathorn East	A.R. 239	Skeena	4	Core, raw		Weighted avo.	1.02	17.60	26.80	53.54	ad	33.36	2.0	clear
15	Tellowa	Talkwa	Goathorn East	A.R. 239	Skeena	5	Core, raw		Weighted avg.	1.16	17.29	25.59	54.34	ad	32.02	1.0	clean
18	Tokwa	Talkwa	Goathorn East	A.R. 239	Skeena	6	Core, raw		Weighted avg.	1.21	20.13	25.28	51.04	ad	33.12	1.0	clean
17	Telkwa	Talisest	Goathorn East	A.R. 239	Skeena	7	Core, new		Weighted avg.	1.14	18.50	26.24	51.21	ad	33.88	1.5	clean
18	Telkan	Tallant	Goathorn East	A.R. 239	Skeena	8	Core, raw		Weighted avo.	1.21	16.74	26.44	54.43	ad	32.69	1.0	clean
19	Telkan	Tallant	Goathorn East	A.R. 239	Skeena	0	Core, rew		Weighted avo.	1.06	16.03	30.02	50.92	art	37.09	1.5	close
20	Telkwa	Telkina	Goathom East	A.R. 239	Skeena	10	Core, raw		Weighted avg.	1.06	17.46	28.00	50.02	ad	35.89	2.0	clean
21	Klappan		Hobbit-Broach	A.R. 695	Bowser Lake		Core, raw	100.0	DH-82006	0.75	17.19	8.54	73.52	ad	10.41		
22	Klappan		Hobbit-Broach	A.R. 695	Bowser Lake		Core, raw	78.0	DH-82006	0.86	28.83	7.39	62.92	ad	10.51		
29	Klannan		Hobbit-Broach	A.R. 695	Bowser Lake	č	Core, rew	100.0	DH-82002	1.48	25.67	7.77	65.08	ad	10.67		
24	Klennen		Hobbit-Broach	A R. 695	Bowner Lake	ň	Core, raw	89.8	DH-82005	1.57	35.78	7.40	55 26	art	11.81		
25	Klappen		Hobbit-Broach	A.R. 695	Bowser Lake	D	Core, raw	86.8	DH-82002	1,14	25.63	9.22	64.01	ad	12.59		
28	Klaccan		Hobbit-Broach	A.R. 695	Bowser Lake	F	Core, raw	89.1	7	1.34	27.16	7.94	63.56	ad	11.10		
27	Klappan		Hobbit-Broach	A.R. 695	Bowser Lake	G	Core, raw	84.5	DH-82001	1.85	32.05	7.40	58.70	ed	11.20		
28	Klaccan		Hobbit-Broach	A.R. 695	Bowser Lake	Guonar	Core, new	94.7	2	1.43	25.59	7.75	65.23	ad	10.62		
20	Klannan		Hobbit Broach	A E 695	Bowner Lake	L	Core, new	95.5	DH-82002	1.77	40.16	7.19	50.88	ad	12.38		
30	Klappan		Hobbit-Broach	A.R. 695	Bowser Lake	1	Core, raw	79.9	DH-82003	1.50	34.27	7.82	56.41	ad	12.17		
31	Klappan		Hobbit-Broach	A.R. 695	Bowser Lake	1 lower	Core, raw	85.9	DH-82001	1.63	16.91	6.99	74.47	ad	8.58		
32	Kappan		Hobbit-Broach	A.R. 695	Bowser Lake	Lummer	Core, raw	91.7	DH-82001	2.04	18.01	7.25	72.70	ad	9.07		
.99	Kappan		Hobbit-Broach	A.R. 695	Bowser Leve	1 00001	Core raw	100.0	DH-82001	1 19	22.07	9.05	67.75	per l	11.75		
4	Klappan		Hobbit Broach	A R 695	Browner Lake		Core raw	68.1	DH-82001	1.75	28.02	8 78	51 45	ad	12.50		
35	Kappan		Hobbit-Broach	A.R. 695	Bowser Lake	ĸ	Core, raw	76.4	DH-82003	1.67	35.46	7.80	55.07	ad	12.41		
.97	Klappan		Lost-Eox	A R 707	Bowney Lake		Core raw	100.0	DH-85016	0.81	33.99	7.55	58.90	0.0	11.40		
47	Klapper		Lost Fox	A P 707	Bowney Lake	0	Core, rew	86.3	DH-85004	1.00	13 70	6.00	78.50	0.0	7.84		
37	rompheni		Loss-Fux	A.D. 707	Downer Lake	E	Core, new	00.3	DH 86010	0.00	10.76	0.00	70.00	000	7.04		
30	Nappen		LOSP-POX	A.H. 707	BOWSER Lake	E	Core, raw	90.3	DH-65016	0.00	10.24	7.32	/3.00	0.0	9.05		
39	Nappan		LOST-FOX	A.H. 707	DOWSER Lake	F	Core, raw	90.8	04-85004	2.89	42.15	5.87	49.09	8.0	10.68		
40	Klappan		Lost-Fox	A.H. 707	BOWSOF Lake	E E	Core, raw	86.9	DH-85014	1.23	35.85	6.59	56.33	0.0	10.47		

British Columbia

Mogical Survey Branch

- 1				Basis	Cal.val.	HGI		Molstur		Sulphu	r H	ydroge	en	Basis		Vitrinite		Semi-	
	0	slortfic Va	lue		(mef)		Raw/		Ash	200	Carbon	2003	Oxyger	8	Amax		Exinite	fusinite	Rew/
Table Item	(MUkg)	(kcal/kg)	(BTU/b)		(BTUND)		clean	(%)	(%)	(%)	(%)	(%)	(%)		(%)	(%)	(%)	(%)	clean
1	26.38	6300	11340	ad	14052					0.45	1			ad					
2	27.40	6544	11780	ad	13432					1.12				ad					
	28.01	6669	12040	ad	14198					0.51				ad					
4	98.10	6222	12120	and	19931					0.74				ad					
	20.10	uraa	TETEV	80	1-36-31					0.74									
5	28.12	6717	12090	ad	14205				14.89	0.42	71.71	5.57	6.05	ad	0,74	73.50	2.20	12.20	rew
8	28.91	6906	12430	ad	15085					2.80				ad					
7	25.27	6035	10860	be	13411					0.95				ad					
8	18.69	4463	8033	ad	12710					0.73				ad					
9	25.60	6113	11000	ad	13651					2.97				ad					
10	23.58	5630	10130	ad	13329					0.47				ed					
11	26.31	6265	11310	ad	14709					0.85				ad, clean					
12	25.36	6059	10900	ad	14726					0.81				ed, clean					
13	24.13	5764	10380	ad	14580					1.22				ad, clean					
14	27.33	6528	11760	ad	14442					0.96				ad, clean					
15	27.57	6586	11850	ad	14613					0.65				ad, clean					
18	26.20	6258	11260	ad	14523					88.0				ad, clean					
17	26.70	6376	11480	ad	14607					1.32				ad, clean					
18	27.93	6671	12010	ad	14632					1.15				ad, clean					
19	28.87	6896	12410	ad	15134					1.75				ad, clean					
20	28.02	6693	12050	ad	15238					2.07				ad, clean					
21	28.33	6770	12180	ad	14708	59	rew	0.75	17.19	0.48	75.33	2.82	2.62	ad	3.72				
22	24.15	5768	10380	ad	14585	43	raw	0.88	28.83	3,05	63.00	2.26	1.31	ad	3.55				
23	24.66	5890	10600	ad	14261	43	raw	1,48	25.67	0.51	66.07	2.13	3.21	ad	3.55				
24	21.06	5030	9050	ad	14092	43	TOW	1.57	35.78	0.42	57.37	2.42	1.75	ad	3.79				
25	24.85	5935	10680	ad	14361	55	19W	1,14	25.63	0.59	66.90	2.58	2.39	ad					
28	24.93	5954	10720	ad	14717	61	IBW	1.34	27.16	0.55	65.51	2.23	2.40	ad	3.55				
27	22.61	5400	9720	ad	14305	47	TEW	1.85	32.05	0.87	59.71	2.09	2.84	ad	3,65	51.20	0.00	28.10	rew
28	24.09	5754	10360	ad	13923	43	TBW	1.43	25.59	0.65	66.32	2.70	2.41	ad	3.37				
29	19.47	4850	8370	ad	13967	46	TOW	1.77	40.16	1.26	52.07	1.86	2.27	ad	3.54				
30	21.60	5159	9290	ad	14134	61	18W	1.50	34.27	1.00	58.06	2.16	2.15	ad	3.27				
31	28.73	6862	12350	ad	14863	40	raw	1.63	16,91	0.47	74.95	2.41	2.71	ad	3.76				
32	27.30	6521	11740	ad	14319	67	(BW)	2.04	18.01	0.47	73.17	2.26	3.33	ad	3.52	46.10	0.00	40.50	CELW
33	26.03	6217	11190	ad	14359			1.13	22.07	0.63	69.33	2.39	3.64	ad	3,47				
34	23.09	5515	9930	ad	13795	45	ruw	1.75	28.02	0.54	65,72	2.42	0.69	ad	3.54				
35	20.93	5000	9000	ad	13945	57	raw	1.67	35.46	0.60	67.73	2.16	1,66	ad	3.36				
35	21.71	5185	9330	ad	13994	55	new	0.81	33.33	0.35	61.44	2.07	1.44	ad					
37	29.56	7080	12710	ed	14738	59	TERM.	1.00	13.76	0.46	80,11	2.89	0,96	ad					
38	27,95	6676	12020	ad	14702	45	TRAV	0.88	18.24	0.42	73.43	2.48	3.72	ad					
39	18.09	4321	7780	ad	13449	58	TBW	2.89	42.15	1.07	46.94	1.67	4,72	ad					
40	21.66	5173	9310	ba	14513	49	FBW	1.23	35.85	0.47	57.55	1.89	2.39	ba					

3

able	Coalfield or basin	Property	Pit or Area	Reference	Unit	Seem	Sample Type	Core Recovery (%)	Sample desc.	Moisture (%)	Ash (%)	Volatile matter (%)	Fixed carbon (%)	Basis	Vol. mat. (daf) (%)	FSI	Raw/ clean
41	Klappen		Lost-Fox	A.R. 707	Bowser Lake	G	Core, raw	96.8	DH-85001	0.96	39.65	6.05	51.31	ad	13.56		
42	Klappan		Lost-Fox	A.R. 707	Bowser Lake	н	Core, new	90.6	DH-85001	1.20	29.45	6.66	62.69	ad	9.60		
10	Klappan		Lost-Fox	A.R. 707	Bowser Lake	н	Core, new	97.9	DH-85013	1.31	33.85	7.89	56.95	ad	12.17		
4	Klappen		Lost-Fox	A.R. 707	Bowser Lake	1	Core, raw	100.0	DH-85001	0.95	20.85	6.35	71.85	ad	8,12		
G	Klappen		Lost-Fox	A.R. 707	Bowser Lake	1	Core, raw	93.6	DH-85016	1.75	24.55	7.12	66.58	ad	9.66		
8	Klappen		Lost-Fox	A.R. 707	Bowser Lake	к	Core, raw	100.0	DH-85005	2.65	22,46	5.73	69.16	ad	7.65		
7	Klappen		Lost-Fox	A.R. 707	Bowser Lake	ĸ	Core, raw	85.7	DH-85009	1.70	31,53	7.65	59.12	ad	11,46		
8	Klappen		Lost-Fox	A.R. 707	Bowser Lake	L	Core, raw	94.8	DHI-85027	0.95	39.35	9.48	50.21	ad	15.88		
9	Klappan		Lost-Fox	A.R. 707	Bowser Lake	L	Core, nw	100.0	DH-85005	0.86	34,45	6.05	58.64	ad	9.35		
0	Klappan		Lost-Fox	A.R. 707	Bowser Lake	м	Core, raw	B3.6	DH-85009	0.84	33.63	10.03	55.50	ad	15.31		
7	Klappen		Lost-Fox	A.R. 707	Bowser Lake	Mumor	Core, raw	100.0	DH-85027	1.10	32,86	6.48	59.58	ad	9.78		
2	Klappen		Lost-Fox	A.R. 707	Bowser Lake	N	Core, raw	90.9	DH-85027	1.09	37.31	7.40	54,20	ad	12.01		
9	Klappen		Lost-Fox	A.R. 707	Bowser Lake	0	Core, raw	91.1	DH-85027	0.99	39.72	5.86	53.43	ad	9.88		
4	Klappen		Lost-Fox	A.R. 707	Bowser Lake	õ	Core, rew	75.8	DH-85005	0.76	26.70	5.80	66,74	ad	8.00		
5	E. Kooleney	Saan Creek	South Hill	A.R. 365	Mist Mountain	5	Bulk, rew		Adit 73-5A-S	1.00	36.60	19.80	42.10	ad	31.99	2.5	raw
8	E. Koolenay	Sage Crank	North Hill	A.R. 305	Mist Mountain	4 lower	Buik, raw		Adl: 72-4-N	1.20	26.90	20.40	51,00	ad	28.57	2.0	new
7	E. Kootenay	Same Creak	North Hill	A.R. 365	Mist Mountain	4 unner	Bulk, raw		Adit 72-4-N	1.40	19,70	22.80	56,50	ad	28.75	2.5	new
8	E. Kootenay	Sage Creek	North Hill	A.R. 365	Mist Mountain	2	Bulk, raw		Adit 72-2-N	0.90	20,70	21.10	56.50	ad	27.19	5.5	naw
9	E. Kootenay	Locianola		A.R. 428	Mist Mountain	1	Bulk, raw		Adit LP-1	0.80	37,40	16.20	45,80	ad	26.21	1.0	DEW
0	E. Koolenay	Lockepole		A.R. 428	Mist Mountain	2	Bulk? raw		7	0,90	24.90	16.20	58.00	ad	21.83	3.0	raw
7	E. Koolenay	Dominian Cael Bibair	Parcel 82, Montesey	A.R. 292	Mist Mountain	К1	Bulk, clean		Adit K1 lower	1.20	8.50	14.50	75,80	ed	16.06	3.5	clean
2	E. Kootenary	Daminion Cowl Block	Parcel 82, Morrissey	A.R. 292	Mist Mountain	KS	Bulk, clean		Adit K5 upper	1.00	8.90	16.20	74,00	ad	17.98	4.5	clean
8	E. Kooteney	Dominion Coal	Parcel 82,	A.R. 292	Mist Mountain	A	Bulk, clean		Adit TA-1	1.40	4.60	21.00	73.00	ad	22.34	7.5	clean
1	E. Kootenay	Dominion Coal Binat	Parcel 82,	A.R. 292	Mist Mountain	в	Bulk, clean		Adit TB-6	1.80	6.80	23.20	68.20	ad	25,38	8,5	clean
5	E. Kooleney	Dominion Cowl Block	Parcel 82, Flathead	A.R. 292	Mist Mountain	в	Bulk, clean		Adlt TB-3	1.30	6.00	20.80	71.90	ad	22.44	7.5	clean
6	E. Kootenay	Dominion Coal Block	Parcel 73	Co. rpt.	Mist Mountain	10	Bulk, raw		Adit 4	1.60	27,50	21.80	49.10	ad	30.75	5,5	ntw
7	E. Koolenay	Dominion Coal Block	Parcel 73	Co. rpt.	Mist Mountain	10 upper	Bulk, raw		Adit 4	1.70	19.20	24.20	54.90	ad	30.59	6.5	raw
8	E. Koolenay	Dominian Coel Block	Parcel 73	Co. rpt.	Mist Mountain	9 lower	Bulk, raw		Adit 2	0.90	17.40	26.50	55.20	ad	32.44	4.0	THM
9	E. Koolenay	Dominian Coal Block	Parcel 73	Co. rpt.	Mist Mountain	9 middle	Bulk, raw		Adit 1	1.60	26.50	23.80	48.10	ba	33.10	3.0	IRW
0	E. Koolenay	Dominian Coel Block	Parcel 73	Co. rpt.	Mist Mountain	9 upper	Bulk, raw		Adit 3	2.20	13.80	24.50	59.50	ad	29.17	5.0	TEN/

ŝ

Geological Survey Branch

				Basis	Calval.	HGI		Moistur		Sulphs	er H	ydrog	ers	Basis	1	Vitrinite	í	Semi-
Table	(MJ/kg)	(kcal/kg	alue) (BTU/lb)		(maf) (BTU/b)		Raw/ clean	(%)	Ash (%)	(%)	Carbon (%)	(%)	Oxyger (%)	•	Rimax (%)	(%)	Exinite (%)	fusinite (%)
-					No.	Sec. 2	5.5	-		-			Sec. 1	-			-	
41	19.01	4540	8170	ad	13544	61	120	0.96	39.68	0.37	52.82	1.86	3.64	ad				
42	23.65	5645	10170	ad	14415	48	raw	1.20	29,45	0.33	63.26	2.07	3.07	ad				
43	21.04	5025	9050	ad	13681	-48	rew	1.31	33.85	0.62	58.47	1.78	3.29	ed.				
44	27.12	6478	11660	ed	14732	48	FILM	0.95	20.85	0.38	70.66	2.19	4.12	ad				
45	25.23	6056	10850	ad	14380	67	raw	1.75	24.55	0.37	67.62	2.29	2.55	ad				
48	25.93	6193	11150	ad	14380	47	TEW.	2.65	22.46	0.50	68.08	2.26	3.48	ad				
47	22.57	5391	9700	ed	14167	51	(Date)	1.70	31.53	0.45	61.75	2.15	1.65	ad				
48	19.38	4629	8330	ad	13737	75	raw	0.95	39.36	0.35	51.95	1.59	5.21	ad				
49	21.67	5176	9320	ad	14218	79	raw	0.86	34.45	1.36	57.42	1.75	3.47	ad				
50	21.82	5212	9380	ad	14133	58	rates	0.84	33.63	0.78	58,15	2.49	3.43	ad				
51	22.50	5374	9670	ad	14403	58	raw	1.10	32.86	0.41	60.71	2,02	2.07	ad				
52	20.35	4861	8750	ad	13958	54	THW	1.09	37.31	1.09	55.64	1.79	2.33	ad				
53	19.61	4684	8430	ad	13985	50	THE	0.99	39.72	1.50	50.70	1.62	4.72	ad				
54 55	25.39	6064	10920	ba	14898	53	TRW	0.76	26.70	0.54	65.27	2.11	3.69	ad ad				
56										0.56				ad				
57										0.48				ad				
58	100000000									0.83				ad				
59	21.09	5038	9068	ad	14486					0.37				ad				
60	26.20	6257	11262	ad	14996					0,45				ad				
61	32.78	7830	14090	ad	15399			0.00	8.50	0.60	83.10	4.00	2.50	dry				
62	32.49	7760	13970	ad	15318			0.00	8.90	0.60	82.80	4.00	2.60	dry				
63	34.12	8150	14570	ad	15377			0.00	4.60	0.40	85,50	4.80	3.50	dry		63.00	0.00	
84	33.08	7900	14220	ad	15258			0.00	6.80	0.40	79.80	4.90	6.70	dry		86.90	0.00	
88	99.75	8050	14510		15456			0.00	0.00	0.80						79.40	0.00	
~	33.10	0000	14510	80	13430			0.00	0.00	0.50	84.40	4.50	3.40	ay		73.40	0.00	
68										0.69				ad, clean				
67										0.56				ad, clean	÷			
68										0.33				ad, clean	E			
69										0,39				ad, clean	0			
70										0.30				ad, clean	0			

Raw/ cleen

clean clean clean

\$

able	Coatfield or basin	Property	Pit or Area	Reference	Unit	Seam	Sample Type	Core Recovery (%)	Sample desc.	Moisture (%)	Ash (%)	Voletile matter (%)	Fixed carbon (%)	Besis	Vol. met. (def) (%)	FSI	Rave clear
71	E. Kootenay	Dominion Coal Block	Parcel 73	Co. rpt.	Mist Mountain	8	Bulk, raw		Adit 6	1.40	13.00	25.70	59.90	ad	30.02	3.5	rew
2	E. Kootenay	Dominion Coal Block	Parcel 73	Co. rpt.	Mist Mountain	7	Bulk, raw		Adit 10	1.60	25.20	25.10	48.10	ba	34.29	2.0	FBW
9	E. Kootenay	Dominion Coal Block	Parcel 73	Co, rpt.	Mist Mountain	5	Bulk, raw		AdR 13	1.00	15.70	26.70	56.60	ed	32.05	2.5	new
¥	E. Kootenay	Dominion Coul Block	Parcel 73	Co, rpt,	Mist Mountain	4	Bulk, raw		Adit 8	2.70	20.60	26.00	50.70	ed	33.90	2.5	raw
5	E. Kootenay	Absmer-Wheeler	Wheeler Ridge	Co. rpt.	Mist Mountain	10	Bulk, raw		Adit 21	1.40	15.80	25.90	56.90	be	31.28	2.5	raw
8	E. Kootenav	Mannar, Milaniar	Wheeler Ridge	Co. rpt.	Mist Mountain	Bicaser	Bulk, nw		Adit 23	1.50	18.70	26.40	46.60	ad	36.16	5.5	CORW
1	E. Kootenav	Manmar, Million Inc.	Wheeler Ridge	Co. mt.	Mist Mountain	6	Bulk, new		Adlt 23	1.20	23.60	26.20	49.00	ad	34.84	4.5	(D)
	E Koolenav	Manager Miller	Wheeler Bidge	Co. mt	Mist Mountain		Bulk, raw		Adlt 19	1.40	14.50	26.00	58,10	ad	30.92	2.0	100
	E Montenary	PROSITING WITHOULDY	Wheeler Bidge	Co. mt	Mist Mountain		Budk row		Addt 22	1.20	31.80	23.80	43.20	ad	35.52	25	101
	E. Rootenary	Hosmer-Wheeler	Wheeler Pulge	Co. mt	Mat Mountain	7	Dulk rea		Addt 17	1.70	99.00	24.80	51.50	ad	92.50	1.6	
9	E. Kootenay	Hoamer-Wheeler	wheeler Hoge	Co. rpt.	Mate Mountain	5	Dull, law		Plan. 17	1.70	22.00	24.00	01.00	au	32,00	1.0	10.1
1	E. Koolenay	Hosmar-Whaeler	Hosmer Ridge	Co. rpt.	Mist Mountain	. 4	BUIK, NW		Adit 25	2.00	23,40	24.60	50.00	90	35,88	2.5	TBN
2	E. Koolenay	Hosmar-Wheeler	Wheeler Ridge	Co. rpt.	Mist Mountain	3	Bulk, raw		Adit 20	1.80	15,40	28.80	54,00	ad	34.78	6.0	184
9	E. Kootenay	Adaption-Wheeler	Hosmer Ridge	Co. rpt.	Mist Mountain	3	Bulk, raw		Adt 11	2.00	7.00	31.30	59.70	ad	34,40	7.5	TRA
1	E. Koolenav	Magmar, Mitaalar	Wheeler Ridge	Co. mt.	Mist Mountain	2	Bulk, raw		Adit 15	2.60	33.50	24.00	39.90	ad	37,56	3.0	194
5	E. Kootenay	Hoamer-Wheeler	Wheeler Ridge	Co. rpt.	Mist Mountain	1	Bulk, new		Adit 16	2.20	23.30	27.00	47.50	ad	36.24	1.0	nav
8	E. Kootenay	Ewin Pass		A.R. 3968.397	Mist Mountain	8	Channel, raw		Adit 3	0.86	18.29	28.80	52.05	ad	35.62	5.0	clea
7	E, Kootenay	Fady Pase		A.R. 396	Mist Mountain	7	Channel, raw?		AdR 1	0.62	7.87	27.23	64.28	ad	29.76	7.5	FRM
ar l	F. Kooteney	Easts Dane		A.R. 396	Mist Mountain		Bulk, raw?		Adit 4	1.20	8,70	26.30	63.80	ad	29,19	8.5	1214
a	E Kootenay	Ends Dass		A.R. 3968397	Mist Mountain	4	Channel, raw?		Adit 2	0.60	6.47	27.16	65.77	ad	29.23	7.5	THAT
0	E. Kootenay	Elk River	?	A.R. 274	Montssey	ĩ	Core, raw	100.0	DH-EB-53	0.60	25.70	18.30	55.40	ad	24.83	9.0	cies
1	E. Kootenay	Elk River	Proposed Elco	A.R. 274	Mist Mountain	2	Channel,		Adit 2	0.00	31.20	16.00	52.80	dry	23.26	8.0	clea
2	E. Koolenay	Elk River	Proposed Elco	A.R. 274	Mist Mountain	3	Channel,		Adlt 3	0.00	30.20	14.40	55.40	dry	20.63	8.5	cies
9	E. Koolenay	Elk River	Proposed Elco	A.R. 274	Mist Mountain	4	Channel,		Adit 4	0.00	26.70	14.60	58.70	dry	19.92	1.0	ciea
4	E, Kootenay	Elk Alvar	Proposed Elco	A.R. 274	Mist Mountain	4A	Channel, raw		Adlt 4	0.00	35.50	13.70	50.80	dry	21.24	7.0	ciea
5	E. Koolenity	Elk River	Proposed Elco mine-site	A.R. 274	Mist Mountain	6	Channel, raw		Adit 27	0.00	16.30	16.60	67,10	dry	19.83	3.5	clea
8	E Kogianav	The Property	Weary Ridge	A.R. 274	Mist Mountain	7	Core, raw	75.0	DH-EB-31	0.60	21.90	15.90	61.60	ad	20.52	2.5	clea
5	E Kontenny	EN PRVDV	0	A R 276	Mist Mountain		Channel, mm		Addt B	0.00	30.19	15.10	54.71	dev	21.63	6.0	clea
	E. Automisity	EN HIVSY	and the second second	ALL LIS	in the internet walling		Charles in the		A	0.00	0.0.0	10.10	20.00		04.00	0.0	-
9	E. Koolenay	Elk River	Proposed Elco mine-site	A.R. 274	Mist Mountain	. 9	channel, niw		Adit 9	0.00	24,94	16.00	59.06	dry	21,32	3.0	cles
9	E. Koolenay	Elk River	Proposed Elco	A.R. 274	Mist Mountain	10	Channel,		Adit 10	0.00	25.40	17.60	57.00	dry	23.59	6.0	clea
0	E. Koolenay	Elk River	Proposed Elco	A.R. 274	Mist Mountain	12	Channel,		Trench EB-T16	0.00	39.51	16.20	44.29	dry	26.78	8.0	clea

đ

Geological Survey Branch

	1.00			Basis	Cal.val.	HGI		Moisture	8.8	Sulphu	er H	ydrog	en	Basis		Vitrinite	÷	Semi-	
Table	Ca (MJ/kg)	(kcal/kg)	(BTUMb)	11 11	(maf) (BTU/b)		Raw/ clean	(%)	Ash (%)	(%)	Carbon (%)	(%)	Oxygen (%)		Rimax (%)	(%)	Exinite (%)	fusinite (%)	Raw! clean
71	-								-	-	-	-			_				
72																			
~										1,9251									
74										0.39				ad, clean					
75										0.32				ad, clean					
10										0.41				ad, clean					
11										0.44				ad, clean					
78										0.32				ad, clean					
79										0.42				ad, clean					
80										0.37				ad, clean					
111										0.45				nd class					
82										0,40				nd, clean					
00										0.00				ad, clean					
20										0.38				ad, clean					
85										0.48				ad, clean					
85										0.65				ad class					
67										0.00				nu, croan					
07										0.51				ad, clean					
88	33.94	8107	14590	ad, clean						0.63				ad					
89										0,40				ad					
80						89	raw			1.73				diry					
91	23.37	5582	10050	dry		94	raw			0.47				diy	1.47	33.00	0.00		clean
92	24.23	5787	10416	diry		112	raw			0.45				dry	1.53	60.00	0.00		clean
97	25.16	6010	10820	dev		98	-			0.96				dev	1.44	39.00	0.00		clean
			TOBLO	ary		~	10.00			0.00				ury	1.44		0.00		Childre
94	22.00	5254	9460	dry		95	TEW			0.49				diy	1.45	60.00	1.00		clean
95	29.13	6958	12520	dry		92	raw			0.69				dry	1.44	31.00	0.00		clean
97						101	-			0.62				dev					
97	24.04	87.49	10238	des		101	1000			0.02				der	1.45		0.00		alana
1		0742	10330	carly .		00	10.00			0.39				uly	1,40	30.00	0.00		crean
36	25.76	6152	11070	diy		80	1394			0.38				dry	1.41	45.00	0.00		clean
99	25.33	6050	10890	dry		81	III W			0.41				dry	1.32	57.00	0.00		clean
100	20.26	4839	8710	dry		79	raw			0.67				dry	1.31	75.00	1.00		clean

Information Circular 1992-20

Ministry of Energy, Mines and Petroleum Resources

¢,

	Coalfield	Property	PR	Reference			Sample	Core	Sample	Molsture		Volatile	Fixed	Basis	Vol. mat.	FSI	
Table Item	or basin		or Area		Unit	Seam	Туре	Recovery (%)	desc.	(%)	Ash (%)	matter (%)	carbon (%)		(daf) (%)		Ram class
101	E. Kootenay	Elk River	Little Weary Bidge	A.R. 274	Mist Mountain	13	Core, raw	98.0	DH-EB-6	1.10	27.40	21.40	50,20	ed	29.89	8.5	clear
102	E. Koolanay	Elk River	Little Weary Bidge	A.R. 274	Mist Mountain	14	Core, raw	100.0	DH-EB-14	1.00	27.00	17.40	54.60	ad	24.17	8.5	dea
103	E. Kootenay	EX Bluer	Weary Ridge	A.R. 274	Mist Mountain	15	Core, raw		DH-EB-39	1.00	7.50	26.50	65.00	ad	28.96	9.0	clear
104	E. Kootenay	Elk River	7	A.R. 274	Mist Mountain	16	Core, raw	100.0	DH-EB-12	1.50	15.30	24.30	58.90	e.d	29.21	8.5	clea
105	E. Kootenay	Elk River	Proposed Elco mine-site	A.R. 274	Mist Mountain	17	Channel, nw		Trench EB-T17	0.00	17.90	26.30	55.80	diy	32,03	8.0	clear
106	E. Koolenay	Elk River	Proposed Elco	A.R. 274	Mist Mountain	18	Channel,		Trench EB-T17	0.00	30.20	25.10	44.70	dry	35.96	8.0	clear
4.000	Dearson Diversi		mine-site	A D 405	Cathing		Core raw		DH-71-1	1.05	14.35	19.71	54.85	ad	23.31	4.0	1204
107	Peace River	Carbon Crawk		A E 495	Gathing	14	Core, rew		DH-72-14	1.35	7.58	19.09	72.04	ad	20.90	2.0	Titre
100	Peace Piver	Carbon Creek		A EL 405	Gathing	14	Core, rew		DH-71-1	1.28	5.21	20.96	72.55	ad	22.41	2.0	100
110	Peace River	Carbon Creek Carbon Creek		A.R. 496	Gething	15	Core, raw		DH-72-14	0.98	9.65	21.36	68.01	ad	23.90	4.5	(B)
	Basso Burr	and an and		A R 495	Gathing	94	Core, tew		DH-71-3	1.55	14.76	23.41	60.28	ad	27.97	7.0	7814
110	Peace River	Carbon Crawk		A.R. 495	Gething	31	Core, rew		DH-71-9	1.72	36.55	18.97	42.76	ad	30.73	4.5	TRM
112	Peace Piver	Carbon Crewit		A.R. 504	Getting	40	Core, mw	99.0	DH-81-89	2.38	10.81	28.02	58,79	ad	32.28	6.0	TRM
110	Peace River	Garbon Criter		A R 504	Gething	40	Core, rew	100.0	DH-81-90	2.64	8.06	27.45	61.85	ad	30.74	6.0	DBM
115	Peace River	Carbon Creek		A.R. 504	Gething	48	Core, raw		DH-81-88	2.59	17.04	22.69	57.68	ad	28.23	2.5	18.9
115	Peace River	Carbon Crank		A.R. 504	Gething	46	Core, rew	100.0	DH-81-90	3.20	5.70	25.98	65.12	ad	28.52	2.5	raw
117	Peace River	Carbon Creek		A.R. 504	Gething	47	Core, rew	100.0	DH-81-90	2.81	24.83	21.64	50.72	ad	29.91	1.5	TRW
118	Peace River	Carbon Creek		A.R. 504	Gething	47	Core, raw	94.0	DH-81-92	3.76	9.54	22.72	63.98	ad	26.21	0.5	TRW
119	Peace River	Carbon Creek		A.R. 504	Gething	51	Core, raw		DH-81-88	2.95	7.16	25.41	64.48	ad	28.27	1.5	FBM
120	Peace River	Carbon Creek		A.R. 504	Gething	51	Core, raw	100.0	DH-81-89	3.70	15.33	24.70	56.27	ad	30.51	3.0	naw
121	Pasce River	Cardren Count		A.R. 504	Gething	51A	Core, rew	100.0	DH-81-90	3.26	8.19	25.57	62.98	ad	28.88	1.5	TEM
122	Pasca River	Carbon Creek		A.R. 504	Gething	6.9	Core, raw	98.0	DH-81-89	2.76	28.91	24.57	43.76	ad	35.96	3.5	TBW
123	Peace River	Carbon Crook		A.R. 504	Gething	50	Core, rew		DH-81-90	2.31	20.07	26.38	51.24	ad	33.99	3.5	raw
124	Peace River	Carbon Creek		A.R. 504	Gething	54	Core, raw	88.0	DHI-81-88	2.58	4.47	26.99	65.96	80	29,04	1.5	DBW
125	Peace River	Carbon Creek		A.R. 504	Gething	55	Core, mw	86.0	DH-81-90	3.50	5.47	28.43	62.60	ad	31.23	1.5	raw
190	Peace Bluer	Outras Const		A.R. 504	Gething	6.9	Core, raw	98.0	DH-81-91	2.73	18.32	26.97	51.98	ad	34.16	2.0	CEM
107	Peace Bluer	Carbon Crewit		A.R. 504	Gething	63	Core, new	91.0	DH-81-91	2.93	14.95	30,60	51.82	ad	37.26	2.0	naw
190	Paace River	Larbon Creek		A.R. 690	Gething	1	Core, raw	95.0	DH-81-31	0.00	6.85	22,93	70.22	dry	24,62	4.5	raw
120	Peace River	Willow Crook		A.R. 690	Gething		Core, raw	92.0	DH-81-22	0.00	10.09	22,48	87.43	dry	25.00	8.5	new
130	Peace River	Willow Creek		A.R. 690	Gething	3	Core, mw	100.0	DH-81-15	0.00	11.79	19.70	68.51	dry	22.33	1.5	raw
1.91	Peace River	Million Con al-		A.R. 690	Gething		Core, naw	100.0	DH-81-39	0.00	11.34	19,49	69.17	dry	21.98	1.0	CEM.
1.92	Peace River	Millow Credit		A.R. 690	Gething	5	Core, raw	100.0	DH-81-37	0.00	8.95	16.22	74.83	dry	17,81	1.5	rew
1.97	Peace River	Million Creek		A.FL 690	Gething		Core, raw	99.0	DH-81-10	0.00	7.03	20.54	72.43	dry	22.09	1.0	CBM
1.94	Peace River	Millow Crock		A.R. 690	Gething	7	Core, raw	100.0	DH-81-25	0.00	9.04	17,73	73.23	dry	19,49	1.5	raw
135	Peace River	Willow Creek		A.R. 690	Gething	A	Core, raw	100.0	DH-81-30	0.00	6.75	19.78	73,47	dry	21.21	4.0	TRM
1.90	Peace Phone	Contrat		A.R. 533	Gething		Core, raw		DH-81005	0.79	26.58	23.62	49.01	ad	32.52	7.0	CBM
1.97	Peace River	Condition		A.R. 533	Gething	5	Core, mw		DH-81015	0.62	16.93	19.71	62.74	ad	23,91	1.5	FBW
+00	Dance Diver	Condition		A E 522	Gathing	Lower net #3	Core, raw	54.6	DH-81014	0.36	10.58	26.15	63.05	ad	28.22	45	
138	Peace River	Goodman		A.M. 533	Centurig	cower part #3	Cord, raw	04.0	DH-BIUIA	0.00	10.06	20.10	03.83	1002	20.22	4.0	

British Columbia

Caloritic Value (mail) (BTUIb) Rawn Ash c/lewn Carbon (%) Oxygen (%) R 107 97 raw 0.60 dry 102 97 raw 0.60 dry 103 109 raw 0.60 dry 104 97 raw 0.60 dry 103 109 raw 0.46 dry 104 97 raw 0.89 dry 104 98 raw 0.89 dry 104 97 raw 0.89 dry 104 199 raw 0.89 dry 104 27.85 6604 11890 dry 85 raw 0.79 dry 0 106 23.50 5613 10100 dry 91 raw 0.68 dry 0 106 32.59 7783 14010 ad 15159 0.65 ad ad	Vitrinit	asia.		Vitrinite	Semi-	
Item 97 raw 0.60 dry 102 109 raw 0.46 dry 103 109 raw 0.46 dry 104 109 raw 0.46 dry 103 104 74 raw 0.89 dry 104 74 raw 0.95 dry dry 105 27.85 6604 11890 dry 89 raw 0.79 dry 0 106 23.50 5613 10100 dry 91 raw 0.68 dry 0 107 30.31 7240 13032 ad 15215 0.65 ad 108 32.59 7783 14010 ad 15159 0.58 ad	imax (%) (%)	Ri (Rmax (%)	K (%)	Exinite fusinite Ala (%) (%) cla	ner' Nan
107 97 raw 0.60 dry 102 109 raw 0.46 dry 103 104 109 raw 0.89 dry 104 27.85 6604 11890 dry 85 raw 0.95 105 27.85 6604 11890 dry 89 raw 0.79 106 23.50 5613 10100 dry 91 raw 0.68 dry 0 107 30.31 7240 13032 ad 16215 0.65 ad 108 32.59 7783 14010 ad 15159 0.58 ad				_		_
102 109 raw 0.46 dry 103 104 88 raw 0.89 dry 104 27.65 6604 11890 dry 859 raw 0.79 dry 106 23.50 5613 10100 dry 91 raw 0.68 dry 0 107 30.31 7240 13032 ad 15215 0.65 ad ad 107 32.59 7783 14010 ad 15159 0.58 ad		iry				
103 104 105 103 27.85 1080 dry 88 74 raw 0.89 0.95 dry dry 105 27.85 6604 11890 dry 89 raw 0.79 dry dr		try				
104 105 27.85 6604 11890 dry dry 74 89 raw 0.95 dry 0.79 dry dry 0 106 23.50 5613 10100 dry 91 raw 0.68 dry 0 107 30.31 7240 13032 ad 15215 0.65 ad 108 32.59 7783 14010 ad 15159 0.58 ad		try				
105 27.65 6604 11890 dry 89 naw 0.79 dry 0 106 23.50 5613 10100 dry 91 naw 0.68 dry 0 107 30.31 7240 13032 ad 15215 0.65 ad 108 32.59 7783 14010 ad 15159 0.58 ad		irv				
106 23.50 5613 10100 dry 91 raw 0.68 dry 0 107 30.31 7240 13032 ed 15215 0.65 ad ad 107 32.59 7783 14010 ad 15159 0.58 ad ad 107 10.58 ad 1058 1058 ad 1058 <td< td=""><td>0.99 74.00</td><td>iry 0</td><td>0.99</td><td>74.00</td><td>7.00 cie</td><td>яп</td></td<>	0.99 74.00	iry 0	0.99	74.00	7.00 cie	яп
107 30.31 7240 13032 ed 15215 0.65 ed 108 32.59 7783 14010 ed 15159 0.58 ed	0.92 77.00	irv 0	0.92	77.00	8.00 ck	ал
107 30.31 7240 13032 ed 15215 0.65 ed 108 32.59 7783 14010 ed 15159 0.58 ed			0.000		Canally Chica	200
708 32.59 7783 14010 and 15159 0.58 and		ad				
COAL DO DE DEPART I I INTERIO DE		nd				
109 33.34 7963 14333 ad 15121 0.71 ad		ad				
710 31.50 7523 13541 ad 14987 0.50 ad		ex2				
111 29.73 7100 12780 ad 14993 0.70 ad		ed .				
112 21 21 5071 9128 ard 14396 0.71 ard		ba				
153 29 79 7116 12909 at 14961 80 mer 2.98 10.81 0.03 73.21 4.70 6.60 at						
114 31.30 7477 13458 and 14038 50 mm 2.63 0.01 10.574 4.00 6.48 and		-				
715 27.79 6638 11949 ad 14403 56 nw 2.59 17.04 0.65 68.65 4.15 5.94 ad		ad				
747 31.68 7566 13010 ad 14440 80 mm 200 570 071 7050 495 545 ad						
777 01.00 7.500 1.0013 84 19946 52 199 3.20 5.70 5.71 75.53 9.50 80 80		200				
1// 44-46 000/ 10042 80 14024 00 188 2.01 24.03 0.13 0.20 3.10 80						
770 69.09 7010 12062 80 10094 49 1889 2.70 9.59 0.71 70,14 5.10 3.29 80		e di				
100 30.55 1366 13256 BU 14324 2,85 7,16 0,71 7,11 4,50 0,04 BU		843				
727 27.30 0567 11056 HG 14003 56 NW 3.70 15.33 0.64 69.25 4.65 5.16 #G		BG.				
727 30.56 7299 13139 ad 14311 50 rew 3.26 8.19 0.69 76.01 4.84 5.79 ad		ad				
122 23.20 5542 9976 ad 14033 55 raw 2.76 28.91 1.52 56.92 3.96 5.06 ad		ъć				
123 26.44 6314 11366 ad 14220 52 raw 2.31 20.07 2.49 63.75 4.61 5.55 ad		ad				
124 31.96 7634 13742 ad 14385 51 raw 2.58 4.47 0.71 81.38 5.09 4.61 ad		ad				
125 30.77 7350 13230 ad 13996 47 raw 3.50 5.47 0.66 77.49 5.00 6.60 ad		ba				
726 26.52 6334 11402 ad 13959 53 rew 2.73 18.32 0.85 66.26 4.44 6.23 ad		ad				
127 27.44 6554 11798 ad 13672 50 raw 2.93 14.95 0.63 68.35 4.85 7.18 ad		act				
7.28 33.35 7966 14338 dry 0.46 dry		9rv				
129 32.52 7767 13981 dry 0.66 dry		irv				
730 30.03 7173 12912 dry 0.36 dry		iry				
131 31.50 7524 13543 dry 0.54 dry		IV.				
7.92 32.90 7859 14146 dry 0.76 dry		in i				
137 33.08 7902 14224 dv 0.63 dv		inv.				
194 32.72 7816 14089 dry D.85 dry		try.				
7.95 33.45 7088 14379 day 0.59 day		5				
and the set of the set		-)				
7.96 23.38 5584 10052 ed 13691 0.60 ad 1	1.26 86.50	ad 1	1.26	86.50	1.50 10.40 re	W.
737 28.98 6922 12459 ad 14998 0.31 ad 1	1.34 28.70	ad 1	1.34	28.70	0.20 65.60 18	1997
738 31.21 7454 13418 ad 15006 0.31 ad		be				

å

abk	Coalfield or beain	Property	Pit or Area	Reference	Unit	Seam	Sampia Type	Core Recovery (%)	Sample desc.	Moisture (%)	Ash (%)	Volatile matter (%)	Fixed carbon (%)	Bests	Vol. mat. (daf) (%)	FSI	Rawe clean
139	Peace River	Goodrich		A.R. 533	Gething	Upper part #3	Core, raw	75.0	DH-81014	0.58	18.05	22.66	58.73	ad	27.84	7.0	1899
40	Peace River	Goodhiah		A.R. 533	Gething	2	Core, raw	96.0	DH-81010	0.44	29.97	21.56	48.03	nd	30.98	5.5	nw
		Goodhich				Lower part #1			DUNDAR					10.001			
41	Peace Pliver	Bandeloh		A.H. 533	Gening	Uncer part #1	Core, raw	60.3	DH-81005	1.00	15.19	26.24	57,51	80	31,33	4.0	naw
140	Peace River	Grootstell		A.R. 533	Gething	opper pair er	Core, rew	85.0	DH-81005	1.28	10.24	23.90	64.58	ad	27.01	1.0	new
49	Paace River	Rund River		A.R. 489	Gething	1 country	Bulk, raw	10000	Adit	0.50	8.60	13.40	77.05	ad	14.81		
44	Paace Blver	Runnt Physic		A.R. 489	Gething	Lioner	Bulk, raw		Adit	0.70	6.40	13.00	79.90	ad	13.99		
45	Peace River	Burnt River		A.R. 489	Gething	60	Bulk, riter		Surface	0.70	11.70	16.40	71.20	ad	18.72	1.0	raw
40	Peace River	Sukunka	No. 1 mine	A.R. 663	Gething	Chamberlain	Bulk, new		No. 1 mine	0.80	10.70	20.60	67.90	ad	23.28	7.0	/2W
	Peace River	Sukumka	Main mine	A R 663	Gething	Chambedain	Bulk raw		Main mine	0.60	11.00	20.50	67.60	ari	22.10	75	
*	1 date ruter	- Cruster Hole	THE REAL PROPERTY OF	10.0	County	Sector Independent	manut care		Second Control of Control	0.00	11,00		01.40		6.05.10	1.10	10.00
48	Peace River	Sukunka	No. 1 mine	A.R. 663	Gething	Skeeter	Bulk, new		No. 1 mine	1.00	24.50	16.70	55.60	ad	25.17	6.5	/IIIW
49	Peace River	Sukuroka	Saddle Creek	A.R. 663	Gething	Bird	Bulk, raw		Saddle Ck. adlt	0.80	8.50	21.70	69.00	ad	23.93	8.5	TERM
50	Peace River	Sokuraka		A.R. 663	Gates	Gates B	Core, raw		DH-BP-?	0.70	6.10	27.70	65.50	ad	29.72	5.5	TEW
51	Peace River	Sukunka		A.R. 663	Gates	Gates D	Core, raw		DH-BP-6	0.60	20,10	23.40	55.90	ad	29.51	5.5	184
52	Peace River	Sukunka		A.R. 663	Gates	Gates E	Core, raw		DH-8P-14	0.60	26,70	21.60	51.10	ed	29.71	4.5	THW
53	Peace River	Mt. Speiker	Mt. Spieker	A.R. 556	Gething	Lower Bird	Core, raw	85.9	OH-MS-20A	0.70	5.40	19.80	74.10	ad	21.09	7.5	TRW/
54	Peace River	Mt. Spinker	Mt. Spieker	A.R. 555	Gething	Upper Bird	Core, niw	51.7	DH-MS-20A	0.40	8.70	19.80	71.10	ad	21.78	7.5	raw
55	Peace River	Mt. Scieker	EB1	A.R. 556	Gates	A	Core, raw	88.5	DH-MS-16	0.70	8.00	22.60	88.70	ad	24.75	8.5	.78W
56	Peace River	Mr. Spinker	Mt. Spieker	A.R. 556	Gates	в	Core, rew	98.5	DH-MS-20	0.80	11.10	25.00	63.10	ad	28.58	5.5	-
57	Peace River	Mr. Spieker	Underground	A.R. 556	Gates	C2	Core, raw	65.6	DH-MS-33	0.60	10.80	22.00	86.00	ad	25.00	4.0	raw
	1000		mining area.	49.27322	23320		1230000	1.122.0		22212							
58	Peace River	Mt. Scieker	EB1	A.R. 555	Gates	D	Core, raw	69.0	DH-MS-19	0.80	32.30	20.50	46.40	ed	30.64	1.5	raw
59	Peace River	Monkman	Duchess	A.R. 547	Gething	Unnamed	Core, raw	73.0	DH-MUD-81-04	0.56	26.36	16.93	56.15	md.	23.17	1.5	TEW
60	Peace River	Monkman	Duchess	A.R. 547	Gething	Unnamed	Core, raw	82.0	DH-MUD-81-04	0.59	17.26	17.79	64.36	ad	21.66	1.0	raw
61	Peace River	Monkman	Duchess	A.R. 547	Gothing	Unnamed	Core, raw	100,0	DH-MUD-81-07	0.70	15.11	19.89	64.30	ed	23.63	6.5	raw
62	Peace River	Monkman	Duchess	A.R. 547	Gates	B1-B2	Core, raw	92.0	DH-MUD-81-03	0.72	13.96	21.67	63.65	ad	25.40	7.5	naw
63	Peace River	Monkman	Duchess	A.R. 547	Gates	83	Core, raw	76.0	DH-MUD-81-03	0.78	23.14	20.26	55.82	ad	26.63	7.0	FROM
64	Peace River	Monkman	Duchess	A.R. 547	Gates	84	Core, raw	82.0	DH-MUD-81-03	0.74	21.10	21.59	\$6.57	ad	27.62	6.5	new
65	Peace River	Monkman	Duchees	A.R. 547	Gates	85	Core, ritw	82.0	DH-MUD-81-09	0.78	33.91	21.76	43.55	ad	33.32	5.0	raw
85	Peace River	Monkman	Duchess	A.R. 547	Gates	87	Core, raw	88.0	DH-MUD-81-13	0.45	16.76	22,40	60.39	ad	27.06	7.0	-
67	Peace River	Monkman	Duchess	A.R. 547	Gates	89	Core, raw	98.0	DH-MUD-81-13	1.05	16.62	22.81	59.52	ad	27.71	2.0	THE
68	Peace River	Mankmen	Duke	A.R. 546	Minnes	2	Core, new	70.0	DH-MDD-80-11	0.46	3.10	17.82	78.62	ad	18.48	2.5	new
69	Peace River	Monkman	Duke	A.R. 546	Minnes	6	Core, raw	69.0	DH-MDD-80-11	0.50	4.10	16.88	78.52	ed.	17.69	1.5	raw
70	Peace River	Monkman	Duke	A.R. 546	Minnee	7	Core, new	45.0	DH-MDD-80-11	0.68	11.15	16.17	72.00	ad	18.34	1.5	TOW
77	Peace River	Montenan	Duke	A.R. 546	Minnes		Core, raw	64.0	DH-MDD-80-11	0.62	7,57	16.56	75.25	ad	18.04	1.5	raw
72	Peace River	Monkman	Duke	A.R. 546	Minnes	10	Core, raw	73.0	DH-MDD-80-11	0.57	23.45	16.99	58.99	ad	22.36	8.0	CINH
-	Pasca Bluer	Advolumen	Deter	A R 464	Gethion	Lowing flow	Core m-	100.0	DH-MBC-82 OF	0.00	90.00	17.11	60.65	des	99.04	1.0	1000
9	I BROW FRYM	THE DEPART	proposed	1111.111	Concerning.	bench1	Cond' 188	100/0	D11010-06-00	0,00	66.20	17.11	90.03	any	22.01	1.0	THE

46

Geological Survey Branch

				Basis	Cal.val.	HGI		Moistu	ne	Sulpha	r 8	lydrog	en	Basis	-	Vitrinite		Semi-	
100	Cr	iorific Va	lue		(maf)		Raw		Ash		Carbon	1	Oxyger	1	Rmax		Exinite	fusinite	Raw/
Table Item	(MUNg)	(kcal/kg)	(BTU/b)		(BTU/b)		clean	(%)	(%)	(%)	(%)	(%)	(%)		(%)	(%)	(%)	(%)	clean
139	28.95	6917	12451	ad	15193					0.43	1			ad					
140	24.68	5895	10611	ad	15152					0.31				ad					
141	29.63	7077	12739	ad	15021					0.24				ad	1.10	53.08	5.95	29.80	raw
142	31.02	7409	13336	ad	14857					0.24				ad	1.15	38.80	1.80	42.70	1200
143	33.11	7908	14235	ad	15651	65	ERW			0.39				ad					
144	33.69	8047	14486	ad	15476	57	EBW.			0.38				ad					
145	31.51	7526	13546	ad	15341	79	FRW			0.36				ad					
148	34.05	8134	14641	ed, clean		76	clean			0.73				ad	1.36	51.76	0.00	24.90	clean
147	34.19	7609	14697	ad, clean		81	clean			0.58				ad	1.37	52.95	0.00	24.90	clean
148	33.82	8077	14539	ad, clean		164	clean			0.51				ad	1.99	50.96	0.00	26.41	rises.
149	33.90	8097	14574	ad clean		104	clean			2.48				94	1.95	53.26	0.00	20.41	risan
150						- net	COMM1			0.78				ad	3.496.	-96.70	0.00	0.61946	Gapan
157										0.00				a.d.					
152										0.00				ad					
159						89	T-Date:			0.29				au					
154						87	1000			0.72				ad					
155						86	(DW)			0.54				ad	1,20	56.84	0.98	20.19	ciean
156						68	IBW			0.53				ad	1.16	49.71	2.35	29.55	clean
157						85	raw			0.41				ad	1.21	39.29	7.23	34,56	clean
158						70	raw			0.33				ad	1.19	53.18	0.56	21.35	clean
159	26.57	6347	11424	ad	15513	74	clean			2.21				ad	2320		0.000	222722	
160	29.12	6955	12519	ad	15131	68	clean			0.32				ad					
161	29.54	7056	12700	ad	14961	77	clean			0.38				ad					
162	31.04	7415	13346	ad	15511	93	clean	1.09	5.90	0.46	75.69	4.37	11.87	ad, clean	1.27	61.31	0.00	30.42	clean
163	27.38	6538	11769	ad	15312	90	clean	1.68	6.85	0.66	75.07	4.24	10.84	ad, clean	1.28	62.31	0.00	26.55	clean
164	27.94	6674	12013	ad	15226	82	clean	1.30	8.40	0.28	73.51	4.48	11.10	ad, clean	1.19	58.82	0.24	30.47	clean
165	22.78	5441	9794	ad	14819	81	clean	0.60	11.21	0.57	74,43	3.75	8.61	ad, clean	1.20	65.71	0.00	25.56	clean
166	28.74	6864	12356	ad	14844	77	clean	0.66	10.87	0.63	77.09	4,45	5.47	ad, clean	1.10	62.85	1.41	25.30	clean
167	29.11	6952	12513	bs	15007	74	clean	0.87	8.85	0.31	77.88	4.21	6.98	ad, clean	1.09	40.86	2.05	46.80	clean
169						88	clean			0,49				ad					
169										0.50				ad					
170						79	clean			0.47				ad					
171						79	clean			0.44				ad					
172	100000	2253		13250		2200	28.24			0.49				ad					
173	27.60	6593	11867	dry		72	clean			0.45				diry					

\$

	Coeffield	Property	Pit	Reference			Sample	Core	Sample	Molsture		Volatile	Fixed	Basis	Vol. mat.	FSI	
	or basin		or Area		Unit	Seam	Type	Recovery	desc.		Ash	matter	carbon	12120	(daf)	0.00	Rener
Table Item			101000					(%)		(%)	(%)	(%)	(%)		(%)		clean
174	Peace River	Monkmen	Duke,	A.R. 464	Gething	Lower (up.	Core, new	100.0	DH-MRC-82-06	0.00	12,78	18.79	68.43	dry	21.54	2.5	naw
175	Peace River	Monkman	Duke, proposed	A.R. 464	Gething	Upper (low. banch)	Core, new	100.0	DH-MRC-82-06	0.00	17.01	19.22	63.77	dry	23.16	5,0	raw
178	Peace River	Monkman	Duke	A.R. 545	Gates	B1	Core, new	100.0	DH-MDD-79-06	0.25	13.49	23.61	62.65	ad	27.37	8.5	new
177	Peace River	Monkman	Duke	A.R. 545	Gates	B1	Core, raw	100,0	DH-MDD-79-01	0.17	27.82	20.14	51,87	ad	27.97	5.5	DBW
178	Peace River	Monkman	Duke	A.R. 545	Gates	B 3	Core, raw	91.0	DH-MDD-79-03	0.61	21.20	20.68	57.51	ad	26.45	7.0	FBW
179	Peace River	Monkman	Duke	A.R. 545	Gates	84	Core, raw	99.0	DH-MDD-79-03	0,58	15.95	22.59	60.88	ad	27.06	7.5	naw
180	Peace River	Monkman	Duke	A.R. 546	Gates	85	Core, new	74,0	DH-MDD-80-07	1.01	15.27	20.66	63.06	ad	24.68	4.0	niiw
181	Peace River	Monkman	Duke	A.R. 545	Gates	87	Core, raw	94.0	DH-MDD-79-03	0.68	30.84	20.57	47.91	ad	30.04	7.0	TRW
182	Peace River	Monkman	Duke	A.R. 545	Gates	89	Core, raw	100.0	DH-MDD-79-02	0.29	24.39	20.96	54.36	ad	27.83	4.0	naw
183	Peace River	Monkman	Honeymoon	A.R. 546	Gates	81	Core, raw	80.0	DH-MDD-80-01	0.60	4.39	22.84	72.17	ad	24.04	8.5	naw
184	Peace River	Monkman	Honeymoon	A.R. 546	Gates	83	Core, raw	80.0	DH-MDD-80-01	0.64	10.37	22.03	66.96	ad	24.76	7.5	FRW
185	Peace Piver	Monkman	Honeymoon	A.R. 546	Gates	B4	Core, raw	79.0	DH-MDD-80-01	0.75	15.88	20.68	62.39	ad	24.89	4.0	FRW
186	Peace River	Manhman	Honeymoon	A.R. 545	Gates	85	Core, raw	79.0	DH-MDD-79-10	0.62	20,92	20.24	58.22	ad	25.80	25	TRW
187	Peace River	Maakmaa	Honeymoon	A.R. 545	Gates	BS	Core, rew	85.0	DH-MDD-79-10	0.25	46.16	18.81	34.78	ad	35.10	3.0	100
100	Peace River	Maakman	Honeymoon	A.R. 545	Gates	BT	Core, raw	100.0	DH-MDD-79-10	0.59	28.06	22.41	48.94	ad	31.41	5.5	100 M
189	Peace River	Monkman	Honeymoon	A.R. 545	Gates	BO	Core, raw	100.0	DH-MDD-79-08	0.75	11.55	21.93	65.77	ad	25.01	25	THE O
190	Peace River	Belcourt	Omega	A.R. 463	Gates	1	Core, rew	55.6	DH-80-7806	0.58	10.36	17.35	71.71	ad	19.48	3.0	FBIW
191	Peace River	Reinword	Holtslander	A.R. 463	Gates		Core, raw	58.9	DH-8D-7801	0.88	12.48	23.67	62.97	ad	27 32	80	-
192	Peace River	Belowurt	Red Deer	A.R. 463	Gates		Core, raw	83.1	DH-8D-7807	0.87	15.00	24.07	50.46	ad	08.80	80	100
197	Peace River	Balaaust	Omega	A.R. 463	Gates		Core, raw	60.0	DH-8D-7805	0.52	20.88	15.99	63.97	ad	10.50	3.6	1000
194	Peace River	Bakoust	Red Deer	A.R. 463	Gates		Core, raw	78.0	DH-8D-7812	0.45	7.15	27.60	64.80	nd	29.87	4.0	1000
195	Peace River	Bekourt	Omega	A.R. 463	Gates	3	Core, raw	58.8	DH-8D-7806	0.52	23.12	15.44	60.92	ad	20.22	2.5	(BW
197	Pance Blver	Rationut	Omena	A R. 463	Gates		Core raw	76.0	DH-80-7806	0.54	10.08	10.99	70.16	nd	24 60		
197	Peace River	Beloourt	Holtslander	A.R. 463	Gales	5	Core, raw	53.3	DH-BD-7801	0.94	18.56	22 88	57.89	and its	28.40	5.0	C DOWN
1.95	Peace River	Beleaurt	Holtsinnder	A.R. 463	Gates	0	Core raw	85.4	DH-BD-7801	1.14	26.95	00.68	51 0E	ad	20,42	5.0	COLUMN .
100	Pasca River	Balaourt	Red Deer	AR 463	Gates		Core raw	91.1	DH-BD-7802	1 20	20.00	04 04	69.90	and a	20.00	0.0	THEY
200	Peace River	Belcourt	Red Deer	A.R. 463	Gates	8	Core, raw	77.9	DH-BD-7802	1.05	38.42	19.69	40.84	ad	32.53	4.0	naw
907	Pasca Buar	<i>C</i>	Samo East	A E 628	Gates	1	Bulk mu		448 77.1.1	0.00	-	10.00	CC 45		00.00		
302	Peace River	SHADAT	Seven South	A R 628	Gates	12	Budle const		Add 77-1-1	0.00	20.30	10.00	50,90		22.03	4.0	raw
000	Deace Bluer	Saxon	Seron East	A B 828	Galas	1	Bulk raw		Add 77.9.9	0.60	10.50	13,10	39,00	80	24,40	4.0	raw
2024	Peace Bluer	Salon	Sauna South	A R 628	Gates	2	Bulk raw		Add 77.0.4	1.20	8.50	00.10	62.70	80	21,33	4.0	riew
205	Peace River	Savon	Saxon South	A.R. 628	Gates	3	Core, raw	88.0	DH-SD-7720	0.60	17.00	21.80	60.60	ad	26.46	7.5	clean
000	Danage Ohung	Charlent	Caugo East	A D 039	Cates	-	Budb must	1000		0.40	40.00		00.00		00.00		Congress r
200	Peace Paver	Saxon	Secon South	A D 828	Cales	4	Dulk, new		Add 77.4.5	0.40	18.30	18,40	62.90	INC.	22.63	4.0	TEW
000	Peace Piver	Sanon	Savon East	A D 620	Gales		Com, raw	100.0	PAGE //-4-0	0.90	23.40	21,00	54.10	aid	28.53	8.0	TRW
200	Peace River	Sanon	Canon Couth	A.D. 020	Catero	5	Core, new	100.0	04-50-7702	0.50	0.70	23,60	69.20	ac	25,43	0.5	TBW
210	Peace Priver	Saxon	Seven South	A.R. 629	Casters	5	Core, raw	100.0	DH-SD-7728	0.80	21.60	21,80	55,80	80	28.09	8.5	naw
210	Peace niver	Saxon	-96X011 30UE1	A.H. 020	Gapes	10	Core, raw	100.0	DH-SU-7724	1.00	8.30	20.00	64.20	ad	29.22	7.5	naw
211	Peace River	Misacvill		A.R. 663	Wapiti	1	Core, raw	100.0	DH-W-7943	11.00	22.20	29.00	37,80	ar	43.41		
212	Peace River	WatNY		A.R. 685	Wapiti	1	Cores, raw		Avg. of all DHs	2,42	27.19	29.47	40.92	ad	41.87		
213	Peace River	Waxwil/		A.R. 685	Wapiti	1	Bulk, raw		Adit 1	3.70	27.25	27.73	41.31	ad	40.17		
214	Bowron River			A.R. 16		Lower	Bulk, mw			2.24	36,10	30.99	30.67	ad	50.28		
215	Bowron			A.R. 16		Lower (mn.	Cons, raw		DH-77-5	2.95	33.36	31.20	32.49	ad	48.99		
	River					bench)											

Geological Survey Branch

츎

British Columbia

				Basis	Cal.val.	HQI		Moistur	re .	Sulphi	ur H	lydrog	en	Basis		Vitrinite		Semi-	
Table Item	(MJ/kg)	(kcal/kg)	(BTUMb)		(maf) (BTU/b)		Rawi clean	(%)	Ash (%)	(%)	Carbon (%)	(%)	Oxyge (%)	n	Rmax (%)	(%)	Exinite (%)	fusinite (%)	Raw' clean
174	31.98	7639	13749	dry						0.36		_		dry		-			
175	32,68	7806	14051	dry, clean						1.41				dry					
178 177 178 179										0.59 0.64 0.45				ad ad ad	1.29 1.34 1.32	57.80 60.67 63.67 57.93	0.00 0.00 0.00	28.90 29.05 26.92 35.12	clean clean clean
180 181										0.38				ad	1.24	55.53	0.00	30.71	clean
182 180 184 185										0.88 0.56 0.34 0.24				ad ad ad ad	1.19 1.35 1.33 1.28	49.89 82.33 65.75 57.36	1.20 0.00 0.00 0.00	40.08 27.91 25.59 30.78	clean clean clean clean
186 187 188 189 190						98	raw			0.50 0.41 0.73 0.39 0.31				ad ad ad ad	1.30 1.25 1.18 1.22 1.61	50.29 53.96 70.30 32.96 59.25	0.00 0.00 0.00 0.00 0.19	38.98 34.34 19.55 54.95 28.04	clean clean clean clean clean
191 192 193 194 195						75 90 80 75 86	raw raw raw raw			0.28 0.21 0.49 0.30 0.37				ed ed ed ed	1.20 1.23 1.62 1.16 1.62	57.58 66.17 61.06 58.49 61.48	0.96 2.55 0.00 3.21 0.00	27.26 17.87 26.60 25.47 28.07	clean clean clean clean clean
196 197 198 199 200						90 74 72 64 68	rew rew rew rew rew			0.33 0.33 0.39 0.67 0.41				22222	1.54 1.17 1.17	68.55 58.72 63.86	0.00 1.83 3.01	21.17 25.14 19.68	clean clean clean
201 202 203 204 204 205	32.18 33.31 34.53	7686 7957 8248	13834 14322 14847	ad, clean ad, clean ad, clean		96 119 85	clean clean clean	0.00 0.00	8.17 7.61	0.27 0.39 0.46 0.35 0.54	82.77 83.61	4.36 4.42	3.46 2.92	dry, clean ad dry, clean ad ad	1.38	51.00	0.00		clean
206 207 208 209 210	33.07	7898	14217	ed, clean		115 85 116	clean clean clean			0.47 0.43 0.61 0.73 0.63				ad ad ad ad	1.35	54.00	0.00		clean
211 212 213 214 215	18.55 28.27 26.59 19.33 19.42	4431 6753 6352 4617 4639	7976 12156 11433 8310 8350	ar mmmt mmmt ad ad	10252 13005 12530	62 49 49 58	raw raw raw raw	0.00 0.00 0.00	0.00 0.00 36.10	0.38 0.61 0.56 0.97 1.11	78.11 75.94 48.59	5.49 4.38 3.75	14,62 18,26 9,69	ar daf daf dry ad					

Ministry of Energy, Mines and Petroleum Resources

Information Circular 1992-20

\$

	Coalfield	Property	Pit	Reference			Sample	Core	Sample	Moleture		Vointile	Fixed	Besis	Vol. met.	FSI	
Table	or beain		or Area	00000000000	Unit	Seam	Туре	Recovery (%)	desc.	(%)	Ash (%)	matter (%)	carbon (%)		(daf) (%)		Raw/ clean
218	Bowron			A.R. 16		Lower (mn.	Core, new		DH-77-7	3.93	23.65	36.08	36.34	ad	49.82		
217	Bowron			A.R. 16		Lower (low.	Core, new		DH-77-11	4.36	29.81	26.38	39.45	ed	40.07		
218 219	River Hat Creek Hat Creek		No. 1 deposit No. 1 deposit	Sinclair Sinclair Sinclair	Kamioops Kamioops	D zone C zone	Core, raw Core, raw Core, raw		DH-76-135 DH-76-136 DH-76-135	0.00	25.99 51.83 34.84	32.91 26.58 31.37	41.10 21.59 33.78	dry dry dry	44.47 55.18 48.15		
004	Hat Crook		No. 1 deposit	Sinclair	Kamioona	A zone	Core, raw		DH-76-135	0.00	42.92	29.63	27.46	dry	51.90		
222	Hat Creek		No. 2 deposit,	A.R. 135	Kamloops	1200	Core, new		DH-75-100	0.00	35.21	33.64	31.15	dry	51.92		
223	Hat Creek		No. 2 deposit,	A.R. 135	Kamloops		Core, raw		DH-75-080	0.00	27.07	34.35	38.38	đry	47.23		
224	Hat Creek		No. 2 deposit,	A.R. 135	Kamloops		Core, rew		DH-75-077	0.00	35.63	32.39	31,97	dry	50.33		
225	Merritt		Coldwater Hill	A.R. 149	Kamloops	8	Core, clean	87.3	DH-2	4.00	7.30	37.60	51.10	ad	42.39	1,5	dean
220	Merritt		Coldwater Hill	A.R. 149	Kamioops	8	Core, clean	90.9	DH-3	3.30	7.50	38.10	51.10	ad	42.71	2.5	clean
227	Merritt		Coldwater Hill	A.R. 149	Kamloops	No name	Core, clean	89.9	DH-3	3.20	6.10	38.50	52.20	ad	42.45	2.0	clean
228 229 230	Merritt Merritt Merritt		Coldwater Hill Coldwater Hill Coldwater Hill	A.R. 149 A.R. 149 A.R. 149	Kamioops Kamioops Kamioops	4 4 5	Core, clean Core, clean Core, clean	69.1 72.3 97.0	DH-3 DH-4 DH-2	2,80 2,00 3,60	6.40 9.00 7.90	39.50 34.20 38.10	51.30 54.80 50.40	ad ad	43.50 38.43 43.05	3.0 7.5 3.0	clean clean clean
291	Morritt		Coldwater Hill	A.R. 149	Kamloops	5	Core, clean	81.9	DH-3	2.50	7.70	36.50	53.30	ed	40.65	2.5	clean
232 233 234 235	Merritt Merritt Tutameen Tutameen		Coldwater Hill Coldwater Hill	A.R. 149 A.R. 149 A.R. 200 A.R. 200	Kamloops Kamloops Princeton Princeton	1 lower 1 upper Lower Main	Core, clean Core, clean Core, raw Core, raw	91.6 97.8 98.0 98.0	DH-2 DH-2 DH-T-77-3 DH-T-77-3	2.90 2.90 4.84 5.80	7.30 8.30 46.72 36.54	37.30 37.70 19.98 26.83	52.50 51.10 28.46 30.83	ad ad ad	41.54 42.45 41.25 46.53	3.0 3.5	clean clean
236	Tulameen			A.R. 200	Princeton	Main	Bulk, raw		Bulk sample 1	5.99	33.88	27.15	32.96	be	45.15		
237	Princeton	PrTutameen Coal	No. 1 mine	McMechan	Princeton	Princeton, etc.	Mine run			14.90	8.00	29.50	47.60	9	38.26		
238	Princeton	Bromley (Gnanby	No. 1 Mins	Dickson	Princeton	Gem-Bromley Vale	Mine run			13.90	13.70	26.30	44.10	9	39.09		

Note: Table items 227 & 231 Rmax values are expressed as per cent dominant Reflectance expressed in V-class

50

British Columbia

3	Ξ.
and and a second	form
	Ē.
-	8
1	Ð.
	9
	8
	22
	0

- 1				Basis	Cal.vel.	HGI		Molature		Sulphu	r H	ydrog	en	Basia	1	/itriolte		Semi-	
	C	Iorific Vai	UØ.		(maf)		Raw!		Ash		Carbon		Oxygen		Rmax		Exinite	fusinite	Rem
Table Item	(MU/kg)	(kcal/ig)	(BTUAB)		(BTU/b)		clean	(%)	(%)	(%)	(%)	(%)	(%)		(%)	(%)	(%)	(%)	clear
210	23.12	5522	9940	ad	13019					1.13				ad					
217	20,38	4868	8763	ad	12485					1.22				ad					
218	21.42	5117	9211	dry						0.23			16.35	dry					
219	11,45	2736	4924	dry						0.40			14.43	dry					
220	17.85	4266	7679	dry						0.79			15.73	dry					
221	14.92	3564	6415	dry						0.68			15.00	dry					
222	17.44	4164	7496	dry						0.56				dry					
223	20.59	4919	8854	dry						0.68				dry					
224	17.71	4230	7614	dry						0.48				dry					
225	30.03	7170	12906	ad	13922					0.64				ad					
226	30.49	7280	13104	ad	14166					0.49				ad					
227	31.11	7430	13374	ad	14243					0.78				be	68.9%	83.50	11.60	0.40	cioar
228	31,41	7500	13500	ad	14423					0.71				ad	10				
229	30,44	7270	13086	ad	14380					0.64				ad					
230	34.17	8180	14689	ad	15948					0.64				ad					
231	31.11	7430	13374	ed	14490					0.69				ad	36.1%	76.30	18.50	0.00	dear
232	30.85	7370	13266	ad	14311					0.63				ed	41				
233	30.44	7270	13088	ad	14270					0.57				ad					
234	14.79	3533	6360	ad	11937	49	raw .			0.66				ad					
235	17.54	4189	7540	ad	11882	47	raw			0.42				ad					
235	17.98	4299	7730	ed	11691					0.54				ad					
237	22.82	5450	9810	2	10663					0.20				ad					
230	19.91	4756	8560	7	9919					0.63				ad					

Ministry of Energy, Mines and Petroleum Resources

51

Queen's Printer for British Columbia© Victoria, 1992