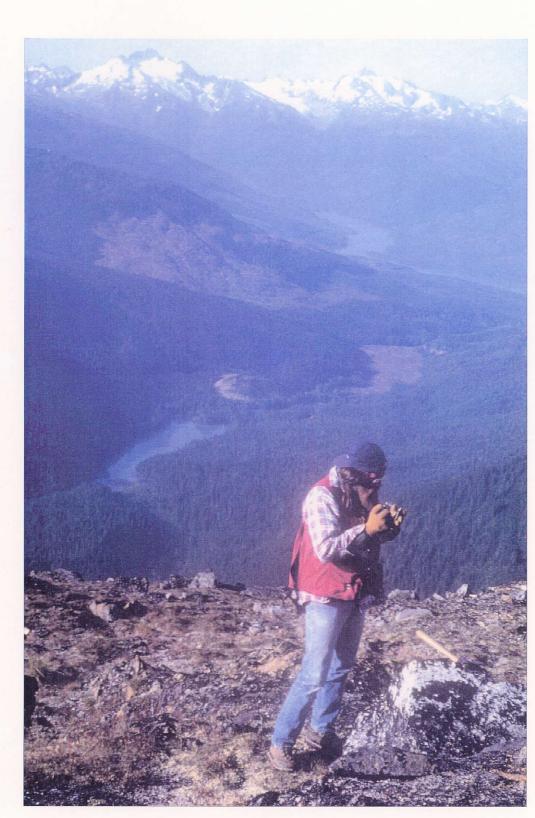


MINERAL RESOURCE ASSESSMENT OF NISGA'A MEMORIAL LAVA BED RECREATION AREA

By Andrew Legun May 1993

Information Circular 1993-9


EXECUTIVE SUMMARY

This study of the Nisga'a Memorial Lava Bed Recreation Area was undertaken to assess its mineral potential. The area is underlain dominantly by sedimentary rocks of the Jura-Cretaceous Bowser Lake Group. These strata generally have low mineral potential except where they are cut by younger, Tertiary intrusions. Around and in the intrusions there is potential for vein, skarn and porphyry type mineralization. Such intrusions underlie the area immediately south of Mount Phillipa in the study area, and Mount Priestly, just north of it. Fault breaks in the crust provide conduits for hot, mineralizing fluids; thus they also are prospective. A north-south fault lineament that is distinct on air photographs runs along the west side of the study area. The volcanic cinder cone in lava bed park iies on its southern extension. This volcano was active in the 1700s.

On a regional basis, the area has potential for precious and polymetallic (multimetal) veins in the Bowser Lake Group rocks, molydenum within quartz stockworks in and adjacent to dikes and other intrusions, and coal measures in a possible northward extension of the Cretaceous Skeena Group sediments.

Within the Recreation Area, ground observations we made improved our knowledge of its mineral potential. Although we discovered several small showings of molybdenum mineralization, there is no evidence of extensive or pervasive hydrothermal alteration in either the sediments or the intrusive rocks. Thus the potential for a molybdenite deposit is moderate, but any deposit found weuld likely be small. There is a moderate potential for finding small polymetallic vein deposits, but little probability that they would be enriched in gold. On the energy side, there is some potential for a geothermal resource that might be tested in the future, but essentially no possibility of an economic coal deposit.

Although future exploration is possible, the potential for finding a major metallic mineral deposit is low.

0

0

0

Î

0

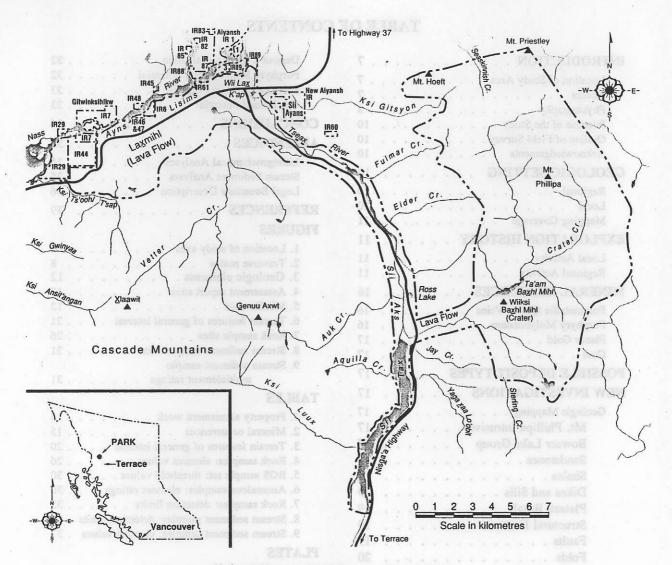
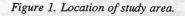

Plate 1. Prospecting on alpine ridges. Volcanic cone in middle distance; lava lake in background.

TABLE OF CONTENTS


.

INTRODUCTION	7
Location of Study Area	7
Access	7
	. 8
Purpose of the Study	10
Purpose of the Study	10
Actional Action A	10
GEOLOGIC SETTING	10
	10
Local	10 · 11
EXPLORATION HISTORY	11
Local Activity	11
Regional Activity	11
MINERAL RESOURCES	16
Polymetallic Quartz Veins	16
Porphyry Molybdenum	16
Placer Gold	17
Coal	17
POSSIBLE DEPOSIT TYPES	17
NEW INVESTIGATIONS	17
Geologic Mapping	17
Mt. Phillipa Intrusive	17
•	17
	19
Shales	19
Dikes and Sills	19
Plateau Basalt	19
Structural Features	19
	19
Faults	20
	20
Dikes and Sills	20 20
	20
Valley Fill basalt	
Wallrock remnant	25
Tarn at Nose of fold	25
Fossil Bivalves	25
Prospecting	25
Intrusive Border	25
Intrusive	28
Western Fault	28
Bowser Lake Group	28
Stream Sediment Analysis	28
Element Evaluation	28
Anomalies	30
Base Metal Suite	30
Porphyry Suite	32
Precious Metal Suite	32
MINERAL POTENTIAL	32

Deposit Type Re-evaluation
Porphyry Molybdenum Potential
Polymetallic Vein Potential
Geothermal Potential
CONCLUSIONS
APPENDICES
Lithogeochemical Analyses
Stream Sediment Analyses
Legal Boundary Description
REFERENCES
FIGURES
1. Location of study area 6
2. Traverse routes
3. Geologic elements
2. Traverse routes 8 3. Geologic elements 12 4. Assessment report sites 12 5. Visible size 12
5. Minfile sites
6. Terrain features of general interest 21
7. Rock sample sites
8. Stream sediment sample sites
9. Stream sediment sample
multielement ratings
TABLES
1. Property assessment work
2. Mineral occurrences
3. Terrain features of general interest 20
4. Rock samples: element values
5. RGS sample set: threshold values 30
6. Anomalous samples: element ratings 30
7. Rock samples: detection limits
8. Stream sediment samples: detection limits . 36
9. Stream sediment samples: element values . 37
PLATES
1. Prospecting on alpine ridges 4
2. Lava flow below cinder cone at
end of footpath 7
3. Upper valley of Crater Creek 9
4. Intrusive contact at Mt. Phillipa. Reddish horn-
fels underlies the peak
5. Felsic dike sets Mt. Hoeft Area 18
6. Fossil bivalves in Bowser Lake Group 22
7. Plunging fold outlined in small tarn lake. 23
8. Lunate ripples Bowser Lake Group 24
9. Wallrock remnant, included in the Mt. Priestly
intrusive
10. Site of molybdenite showing in rocks of Mt.

Joint Nisga'a/BC Parks Committee Minga Nisga'a/Mismaaksgum Gat

Felsio dilee antorites ino post.
Felsio dilee aota Mi, Hoefi Arca.
Founjug fold outlined in small tarn late.
Plunging fold outlined in small tarn late.
Mallrock runnant, included in the Mi. Priestly intrusive.
Site of mobildenite showing in rocks of Mi.

INTRODUCTION

Location of the Study Area

The study area covers approximately 6440 hectares in NTS 103P/02W, near the town of Aiyansh, halfway between Terrace and Stewart. The area extends north from Nisga'a Memorial Lava Bed Park. The center of the study area is approximately at 55° 11' north latitude and 128° 53' west longitude (Figure 1). A legal boundary description is included in the Appendix.

Access

The area is reached by following the Kalum road north from the town of Terrace. North of Lava Lake the road parallels the western boundary of the study area. A logging road turnoff to the east provides access to the valley of Crater Creek. A foot trail from the logging road descends into the valley intersecting the lava flow about a kilometer below the volcanic cone. The study area may be entered by walking up the valley beyond the cone. The author found the valley bottom difficult to traverse.

The Kalum road joins the Nass road. Proceeding east along Nass road there is a turnoff, again to the right, to a logging road extending up Seaskinnish creek. The road provides access to the north side of the study area. It is to be upgraded for further use.

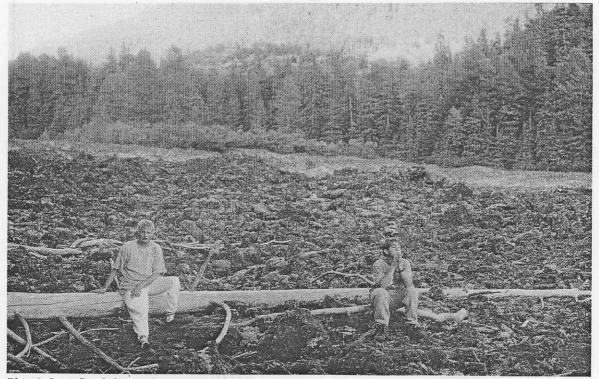
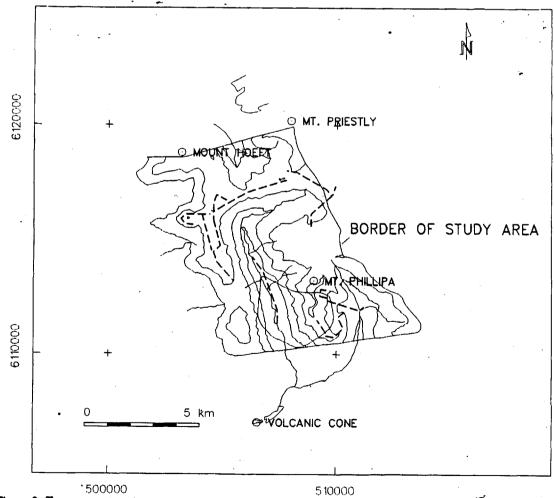


Plate 2. Lava flow below cinder cone at end of footpath.


The road ends below the ridge between Mt. Hoeft and Mt. Priestly. From the viewpoint of the ridge it appears possible to scramble up to the ridge from the road.

The most direct access to alpine ridges is by helicopter.

Physiography

The area lies in the Nass Ranges regional landscape (Youds, 1989). This landscape is typified by a temperate coastal montane climate and by rugged and serrate ranges. These ranges alternate with valley systems in north to south trending belts.

The study area encompasses the northern half of the watershed of Crater Creek. Ridges defining the watershed are mostly at elevations of 1500 to 1800 metres. Maximum elevation, represented by the peak of Mt. Priestly, is 2350 metres. Lava Lake, representing local base level, is only 172 metres above sea level. Relative relief is thus high.

Several small ice fields are present, the largest north of Mt. Phillipa.

Figure 2. Traverse routes.

Plate 3. Upper valley of Crater Creek.

Purpose of the Study

The purpose of the field study was to gather information to help assess the potential for undiscovered mineral resources within the recreation area. Existing data was regional in relevance and needed to be augmented by local work.

Outline of Field Survey

A week in August 1992 was spent in the study area. Nass Camp was used as a base. A helicopter based at Nass Camp greatly expedited the work, providing access to alpine ridges without transit costs from Terrace. Work focussed on the following:

- Examination of nearby Minfile showings.
- Mapping and prospecting the ridges bounding the drainage basin of the Crater Creek valley.
- Rock and stream sediment sampling.
- Prospecting and mapping the border of the intrusive body south of Mt. Phillipa.

Traverses undertaken are shown in Figure 2.

Acknowledgments

Funding for this study was provided by the Ministry of Environment, Lands and Parks. Direction was provided by W.J. McMillan of the Ministry of Energy, Mines and Petroleum Resources. District Geologist Paul Wojdak provided regional expertise and facilitated local arrangements. Prospector Dan Ethier ably assisted the writer in the field, and demonstrated a sharp eye for mineralization.

GEOLOGIC SETTING

Regional

The area is situated just east of the contact between the Tertiary Coast Plutonic Complex and the Mesozoic Bowser sedimentary basin. In this setting, sediments are intruded by satellite granitic stocks of the Coast Complex.

Local

The study area is underlain mainly by rocks of the Bowser Lake Group. This succession of siltstones, mudstones, sandstones and greywackes is of Jurassic-Cretaceous

age.

Just north of the study area a granitic intrusion underlies the area of Mt. Priestly. It has been dated at 49 million years by the potassium-argon (K-Ar) method. It is thus Tertiary (Eocene) in age. A second granitic intrusion, probably of similar age, lies immediately south of Mt. Phillipa within the study area.

A Quaternary cinder cone south of the study area was active in the 1700s but is now apparently extinct. One or more basalt flows emitted from a source near the cone descended the valley of Crater Creek, the Tseaux River, and spread out in the main Nass valley, destroying two aboriginal villages. Characteristics of the flow and volcanic cone are reported by Hanson (1924) and by Sutherland Brown (1969).

A north-south structural lineament that is quite distinct on air photos, and is interpreted to be a fault, transects the west side of the study area. The cone appears to lie on its southern extension.

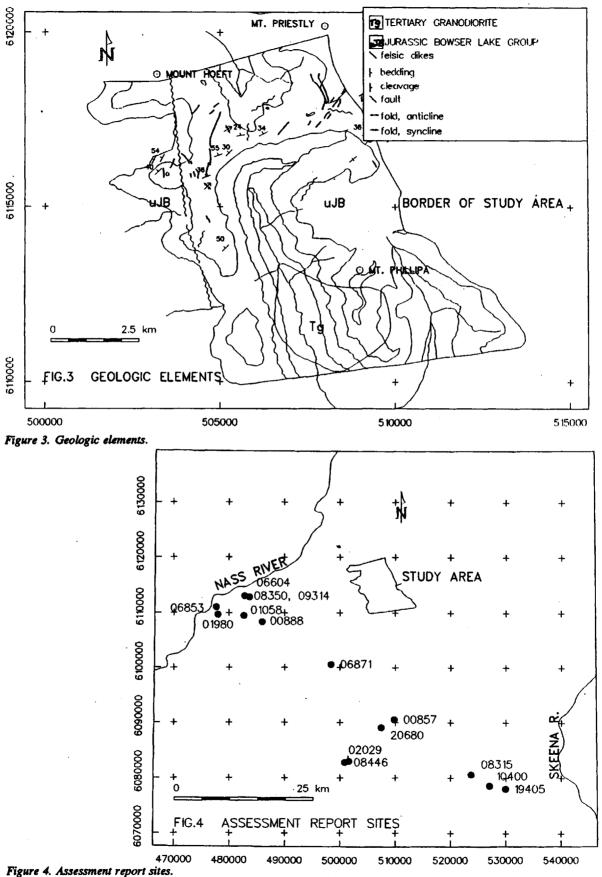
Elements of the geology are shown in Figure 3.

Mapping coverage

The area was mapped on a reconnaissance scale by Hanson (1923). Hanson noted an area underlain by intrusive rock within the present study area. Carter and Grove (1971) further defined this as two separate intrusives, one in the vicinity of Mt. Phillipa and the other at Mt. Priestly. The location and dimensions of the area underlain by intrusive rock was not well defined at a 1:250 000 scale of compilation.

South of the study area, along the structural trend, there has been more recent mapping at a scale of 1:125 000 (Van der Heyden and Hill, 1985).

EXPLORATION HISTORY

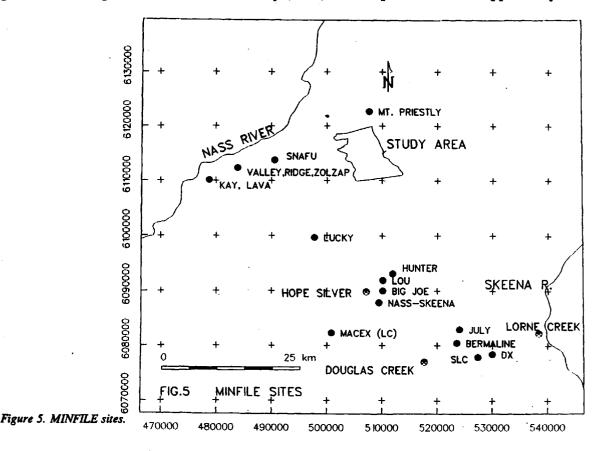

Local Activity

There are no current valid mineral claims in the study area and there is no record of exploration. The cinder cone and lava flow immediately to the south are protected from exploration activities. A mineral reserve was established in 1971, and the Nisga'a Memorial Lava Bed Park was created in April 1992.

Regional activity

To assess the regional potential a larger area, some 250 000 hectares enclosing the study area was chosen. This area includes all MINFILE and assessment work sites in the vicinity. The distribution of assessment work sites is shown in Figure 4 and mineral deposit

British Columbia


B.C. Geological Survey Branch

sites in Figure 5. Table 1 summarizes the latest assessment work carried out on each property and Table 2 the mineral occurrences.

Prospectors and miners in the early part of the century focussed on developing narrow polymetallic vein deposits found south and south-southeast of the study area. Mineral showings such as the Hunter, Hope Silver (Silver Ghost), Bermaline (Frankie Blue), July and September were discovered and tested during this period. These early properties, accessed by packhorse trails, are well described by Kindle (1937a, 1937b). Most of the small workings on these lode veins were abandoned in the 1930's. Small shipments of high grade ore were made but the quantities and grades were not recorded.

Until the 1950s there was a small amount of placer gold produced, principally from Douglas and Lorne Creeks in the south. The total recorded production was about 11 kilograms of gold, but the actual unrecorded production may have been much greater. Most of the gold recovered came from hydraulic mining of an ancient gravel-filled channel of Lorne Creek known as Dry Hill pit.

In the 1960s, 1970s and early 1980s companies explored for porphyry molybdenum deposits along the east margin of the Coast Plutonic Complex. Intrusive bodies carrying molybdenum (and copper) mineralization were discovered in the area (Big Joe, Macex, SLC claims). Geochemistry was the key to at least one discovery. The SLC claims were staked and eventually drilled by Newmont Exploration based on joint Federal and B.C. government Regional Geochemical Survey (RGS) silt sample results of 48 ppm molybde-

Information Circular 1993-9

num, 184 ppm copper and 14 ppm tungsten.

During this time quartz-filled shear zones carrying minor copper, lead and zinc were found on Cedar Creek (Lou showing). There was a small amount of production from the Hope Silver property in 1966 when five tonnes of sorted ore were shipped. 7527 grams of silver, 151 kilograms of copper, and 292 kilograms of lead were recovered from this shipment.

There has been little exploration work during the last five years. Additional electric current conductors, possibly indicative of hidden breccia veins have been found in drift covered areas surrounding the old workings of the Hope Silver (Silver Ghost) property. A narrow but hereto unknown quartz vein carrying lead and copper was found in pursuing gold bearing quartz float on the DX property. This property lies on well prospected ground in the valley of South Lorne Creek.

A. R.			·		
Number	Year	Claim Name	Work Do	one	Target
00857	66	Big Joe	SOIL		Porphyry Molybdenum
02029	69	Macex	IPOL	MAGG	Porphyry Moly-copper
08315	80	Frankie Blue	HYDG	PROS	Vein
08446	80	Lc	GEOL	SOIL	Porphyry Moly-copper
10400	81	Slc	DIAD		Porphyry Moly-copper
19405	89	Dx	PROS		Gold Vein
20680	90	Silver Ghost	EMGR	GEOL	Breccia Vein
00888	66	Bolo	GEOL		Unknown
01058	67	Kay	GEOL		Porphyry Molybdenum
01980	69	Kay	ROCK	SOIL	Porphyry Molybdenum
06604	77	Ridge	LINE		Porphyry Molybdenum
06853	78	Lava	PROS		Porphyry Molybdenum
06871	78	Twin	PROS		Porphyry Molybdenum
08350	80	Valley	PROS	SOIL	Porphyry Molybdenum
09314	81	Zolzap	GEOL	LINE	Porphyry Molybdenum

TABLE 1PROPERTY ASSESSMENT WORK

Codes:

DIAD=SURFACE DIAMOND DRILLING EMGR=ELECTROMAGNETIC, GEOPHYSICS GEOL=GEOLOGICAL HYDG=WATER GEOCHEMISTRY IPOL=INDUCED POLARISATION, GEOPHYSICS

LINE =LINE CUTȚING MAGG=MAGNETIC, GEOPHYSICS PROS=PROSPECTING ROCK=ROCK GEOCHEMISTRY SOIL=SOIL GEOCHEMISTRY

Information	
Circular	
1993-9	

1

I,

1

}

Ŋ

· I

- }

1

ł

MINFILE	NAME	COMN	IODI	TIE	S			STATUS	HOST ROCK	DEPOSIT FORM	ASSESSMEN
	· · · · · · · · · · · · · · · · · · ·										REPORT NO.
1031 024	SEPTEMBER	AG						SHOW	Bowser Lake Group	Polymetallic quartz vein	· · · · · · · · · · · · · · · · · · ·
1031 026	BERMALINE	AG	PB	CU	AU	ZN	MO	SHOW	Bowser Lake Group	Quartz veins	8315
1031 204	DOUGLAS CREEK	AU						PAPR	Gravel	Placer	
1031 025	JULY	CU	AG					SHOW	Bowser Lake Group	Polymetallic quartz vein	
1031 115	LOU	ZN	PB	CU	AG	AU		SHOW	Bowser Lake Group	Polymetallic quartz vein	
										in shear	
1031 022	HOPE SILVER	AG	CU	PB	ΖN			PAPR	Bowser Lake Group	Polymetallic quartz fault	20680
										breccia	
1031 new	DX	CU	AG			• .		SHOW	Feldspar Porphyry	Quartz vein	19405
1031 222	HUNTER	AG	PB	ZN	CU			SHOW	Bowser Lake Group	Polymetallic quartz vein	
1031 002	NASS-SKEENA	COAL						SHOW	Skeena Group	Stratabound fossil fuel	COAL 229
1031 023	BIG JOE	MO						SHOW	Granodiorite	Narrow quartz veins	857
1031 021	MACEX	CU	MO					SHOW	Bowser Lake Group	Quartz veins near intrusive	7570, 8446
103P 236	MT. PRIESTLY	MO						SHOW	Granite	Unknown	
103P 232	SNAFU	MO						SHOW	Feldspar porphyry	Disseminated, quartz veins	8656
103P 238	LUCKY	MO	CU					SHOW	Granodiorite Porphyry	Quartz veins	6871
103P 225	KAY, LAVA	MO						SHOW	Monzonite Porphyry	Disseminated, quartz veins	6853, 8856
103P 231	VALLEY, RIDGE	MO						SHOW	Monzonite Porphyry	Disseminated, quartz veins	8350, 9314
	ZOLZAP									·	4
SHOW= S	HOWING	 							<u></u>	· · · · · · · · · · · · · · · · · · ·	
	ST PRODUCER	{							· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	

TABLE 2 MINERAL OCCURRENCES

١

١

ļ

1

١

MINERAL RESOURCES

Polymetallic Quartz Veins

Commodities within these veins include lead and zinc with silver, copper, and very minor gold. Minerals carried by these veins include one or more of galena, sphalerite, chalcopyrite, tetrahedrite, pyrrhotite and arsenopyrite. The veins generally are associated with shears, faults and dikes in the Bowser Lake Group. The veins may also be hosted in intrusive stocks. The veins consist of silicified and brecciated host rock in linear trends, irregular fracture veinlets, or quartz bands interlayered with gangue. The veins are usually narrow (less than a metre) and short (a few tens of metres). They may follow bedding or crosscut it. One of the better examples of this deposit type is the Hope Silver property (MINFILE 1031022) where a 6 to 9-neetre-wide breccia zone strikes southeast and dips steeply southwest. Veining and sulphide mineralization is best developed in the sheared footwall of the zone. The breccia is hosted in dark grey siltstones. Ore minerals include pyrite, sphalerite, galena, chalcopyrite and tetrahedrite.

Shear zones of similar strike and dip continue for several hundred feet southeast of the old workings. Some have narrow quartz-breccia vein development.

Porphyry Molybdenum

Numerous molybdenite showings are known north and west of the study area. The showings are associated with small intrusive stocks and dike swarms near the eastern margin of the Coast Plutonic Complex. The intrusives are often elongate suggesting emplacement along faults (Carter 1981).

Molybdenite occurs in stockworks of quartz veinlets and as disseminations and fracture coatings within the intrusive or adjacent to it in its country rock. Molybdenite is also found in gouge zones and shears. The intrusive may be largely unaltered as at the MT. PRIESTLY and BIG JOE properties or it may be pyritic, with areas of brecciation and silicification as at the LUCKY. The intrusion may be porphyritic. Porphyritic granodiorites or monzonites with crowded euhedral phenocrysts of plagioclase constituting up to 40 % of the rock by volume are locally known as "Alice Arm type porphyries" as at the SNAFU and LUCKY showings. Mineralization is also found in late phases of the intrusive, such as aplitic and alaskitic dikes.

The intrusive may vary in form, being equidimensional or elongate (dike-like). Molybdenite may be accompanied by some chalcopyrite as at the MACEX, LUCKY showings. Certain directions of fracturing or veining may carry more mineralization.

Placer Gold

Modest placer gold deposits are localized in the gravels of Douglas and Lorne Creeks. Both creeks head in the same mountain (Duffell and Souther, 1964). No other creeks in the area have been productive.

Coal

South of the study area, six coal seams are exposed along the steep banks of Little Cedar River over a distance of about half a mile. Two of the seams are about a meter thick and contain 20-30% ash. The seams trend generally east northeast. Dip varies from 50 to 20 degrees. The seams occur in the Skeena Group, a sequence of carbonaceous sandstones and shales that elsewhere contains major reserves of coal (Klappan coalfield). The Skeena Group forms a northwest trending belt of exposures, bounded by faults (Hill and van der Heyden, 1985).

POSSIBLE DEPOSIT TYPES

Based on regional data the study area was seen to have potential for precious and polymetallic veins in Bowser Lake Group, molybdenum in quartz stockworks associated with intrusive stocks and dikes, and coal in a possible northern extension of Skeena Group sediments.

NEW INVESTIGATIONS

Geological Mapping

Mt. Phillipa Intrusive

The body was remapped. It underlies an area about two by three kilometers in dimension. The intrusive consists of biotite granodiorite, well exposed on the ridges south of Mt. Phillipa and along the eastern wall of Crater Creek valley. On the west side of Crater Creek valley the contact of the intrusive can be traced across the tops of a set of gullies near the valley bottom. The rock is generally equigranular and uniform. It is cut by occasional narrow barren quartz veins that may contain large crystals of hornblende. The texture is unlike that of the crowded porphyries of the "Alice Arm type". Near its north and southeast borders there are some aplitic and alaskitic dikes with muscovite mica rather than biotite. There are also minor zones of clay and silica alteration including vuggy quartz breccia zones.

Bowser Lake Group

It was not possible to subdivide the Bowser Lake Group in the study area. Bowser

Plate 4. Intrusive contact at Mt. Phillipa. Reddish hornfels underlies peak.

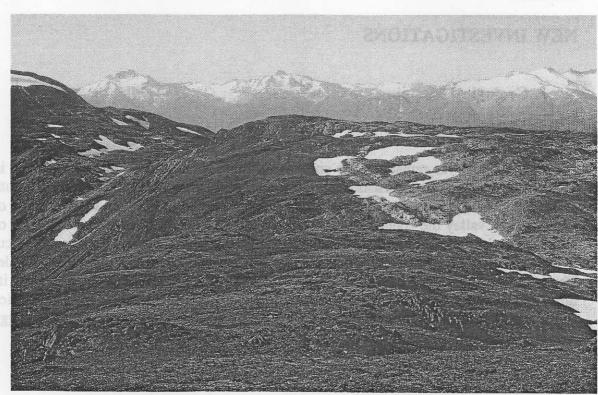


Plate 5. Felsic dike sets in the Mt. Hoeft area.

sequences are dominated by either sandstone or shale.

Sandstones: The sandstone layers are graded with load casts at their bases indicative of rapid deposition, and contain siltstone rip-up clasts indicative of erosion. The more massive sandstones show features consistent with deposition from density currents (turbidites). The sandstones display parallel lamination and are often overlain by thin beds of rippled to laminated siltstone. A few bedding surfaces display migrating dune ripples.

Some sandstone beds are calcareous, flaggy-weathering, and weather to an orange brown color. Locally such sandstones contain bivalve fossils. These sandstones were probably deposited in shallower seawater than the turbidites.

- Shales: The shales consist of grey-black siltstones, mottled mudstones and grey paper shales grading into fine sandstones. Some of the siltstones are pyritic and siliceous.
- Dikes and Sills: Numerous thin diker and sills are present in the study area. Represented are feldspar porphyries, mafic rich to mafic poor syenites and granodioritic rocks. Grain size varies considerably, possibly reflecting volatile content and depth of emplacement below the surface.
- Plateau basalt: An area shown to be underlain by plateau basalt on older maps (Carter and Grove, 1971) was not found during the field study. Well jointed red hornfels underlies the ridge where plateau basalt was previously identified. Possibly it was misidentified as columnar basalt from the air. Alternatively the basalt might be in the valley bottom and hidden from view.

Structural Features

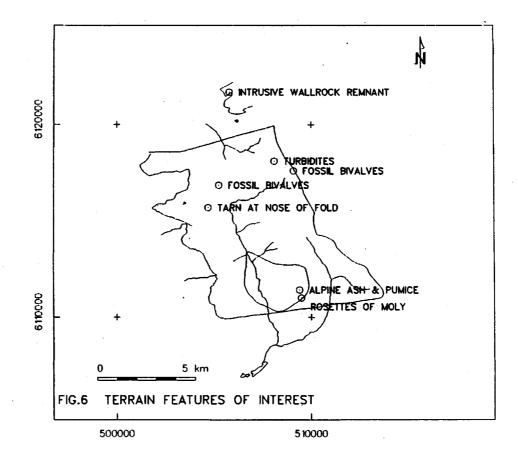
The structure of the area is complex and difficult to discern in detail due to a lack of marker units in the sediments of the Bowser Lake Group.

Faults: The principal structural feature of the area is the Western fault, a major north-northwest trending fault zone that transects the study area near its western margin. The young volcanic cone also lies along the extension of this lineament. The fault is apparently the northern extension of a fault identified in NTS 103I (G.S.C. Open File 1136), and believed to be part of a a major structure underlying the Kalum-Kitimat Valley (Duffel and Souther, 1964). The geology in the south suggests that the east side of the fault has moved upward and northward relative to the west side. Fracturing and composite quartz veining is associated with the Western fault in the study area.

A few small faults are identified on the geology map; many others are suspected.

- Folds: We recognized several northeast trending plunging folds. The best exposed fold underlies the ridge separating Crater Creek and Seaskinnish drainage on the north. It is an asymmetric open syncline. The northwest limb dips steeply and the southeast limb dips at a low angle (24°) to the east. The southeast limb forms the "rib" of the ridge as well as the dip slope of the headwall of Seaskinnish Creek. There is a well developed axial planar cleavage here and throughout the area which obscures bedding in all but the more massive sandstones. Cleavage is easily mistaken for bedding in the area.
- Dikes and Sills: Late sills and dikes are boudined, and faulted in step-wise fashion. Flow banding in some suggests they were emplaced while in a plastic state. Exposures on valley walls show convoluted patterns of emplacement, suggesting the host rock was undergoing deformation during emplacement.

Terrain Features of General Interest


The location of interesting features is shown in Figure 6, listed in Table 3 below, and described.

FEATURE	UTM NORTH	UTM EAST	ELEVATION
FOSSIL BIVALVES	6116850	505250	5440'- (1660m)
FOSSIL BIVALVES	6117600	509100	5640' (1720m)
WALLROCK REMNANT	6121700	505800	5250' (1600m)
VALLEY FILL BASALT	6128200	516900	3200' (980 m)
ASH & PUMICE	6111400	509400	5610' (1710m)
TARN AT NOSE OF FOLD	6115700	504700	5250' (1600m)
MOLYBDENITE ROSETTES	6111000	509500	5575' (1700m)
TURBIDITES	6118100	508100	5950' (1815m)

TABLE 3 TERRAIN FEATURES OF GENERAL INTEREST

Ash & Pumice: Volcanic ash and pumice are preserved on outcrops of granodiorite on the alpine ridge five kilometers to the northeast of the volcanic cone. The ridge provides a down valley view of the cone and lava flow. The pumice lying in the rocky hollows of the alpine environment is loose, not incorporated in the thin soil. From the vantage point of the alpine environment it could have been deposited the previous night rather than a few centuries ago. Nearby blue-grey rosettes of molybdenite can be found within quartz veins cutting a granodiorite dike (see Prospecting). Valley Fill Basalt: Basalts outcrop north of the study area near Mt. Hoadley about 12.5 kilometres northeast of Mt. Priestly. Examination of air photos and aeromagnetic maps suggested basalt outcropped in two valleys rather than on mountain slopes as represented by Carter and Grove (1971). The area was flown to confirm the presence of basalt lava flows similar to the Aiyansh flow.

> Columnar basalt is observed in the two valleys. The basalt forms a high flat terrace above the present incised creeks. The edge of the terrace where it has been eroded is marked by continuous line of columnar basalt, apparently in several layers. Where the two lobes join, the inside margin of the terrace "welded to the valley wall", can be continuously traced from one valley into the other. Glimpses into the incised canyons of each valley suggest the present creeks have cut below the floor of the basalt, i.e.. the ancient valley bottom. In each lobe the basalt thickens toward the valley junction. The downstream thickening, horizontal layers, and spectacularly uniform cooling features suggest these lobes originated by ponding of lava (in a lava lake?). Unexplained is the nature and location of the barrier that was responsiblo for ponding of the lava. East of the valley junction only a remnant of the basalt terrace is preserved as a flat topped promontory against

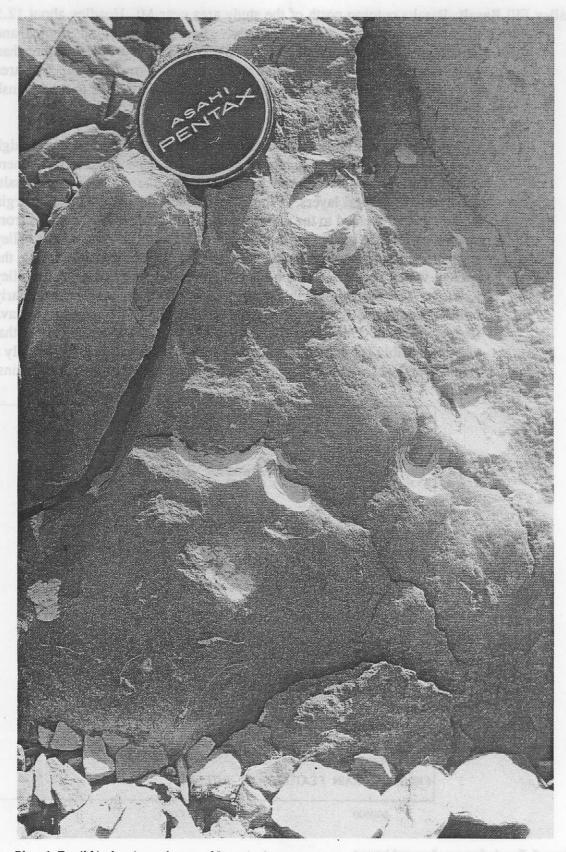


Plate 6. Fossil bivalves in sandstones of Jurassic-Cretaceous Bowser Lake Group.

plate 7. Plunging fold outlined in tarn.

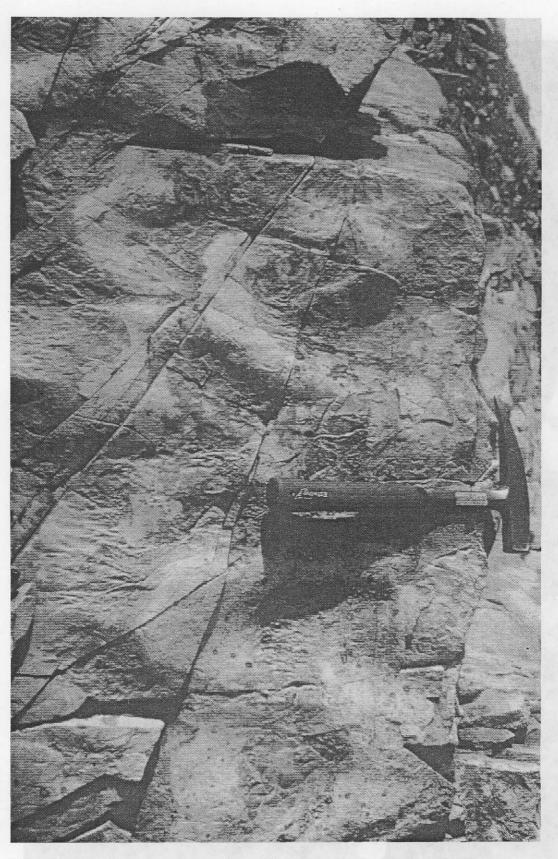


Plate 8. Lunate ripples on sandstone bed, Bowser Lake Group.

the valley wall. The promontory is draped by glacial deposits, obscuring bedrock underneath. The single valley continues eastward and joins the north trending Kiteen valley. If basalt was present east of the promontory, it has been subsequently eroded out.

The surface of the basalt lobes is forested, swampy, pitted with ponds. Linear grooves, apparent on airphotos, suggest the lobes have been overridden by valley glaciers. Data from similar basalts in the region (Grove 1986) suggest they may be about half a million to a million years old.

- Wallrock Remnant: North of the study area hornfelsed wallrock of the Mt. Priestly intrusive is preserved as a spectacular erosional remnant against the glacial valley wall. Elsewhere the valley wall consists of pale intrusive rock except for the dark tear-shaped outline of the baked wallrock.
- Tarn at Nose of Fold: On the ridge above the valley in the northwest corner of the study area, a small horseshoe-shaped tarn outlines the plunging nose of an anticlinal fold.
- Fossil Bivalves: Fossil marine bivalves with both valves intact were found at several localities. In addition pyritic pseudomorphs of shells with fibrous aragonite(?) occur in black shales near the retreating glacial tongue at the head of Crater Creek.

Prospecting

The locations of samples the prospector collected for lithogeochemical analysis is shown in Figure 7 and the results of analyses in Table 4.

Intrusive border: A molybdenum showing occurs in a granodiorite dike peripheral to the Mt. Phillipa intrusive. The dike trends 240 degrees and cuts hornfelsed sediments. Within it several sets of narrow quartz veins contain scattered coarse rosettes of molybdenite. The veins are only a few centimetres wide and cut the dike at a slightly oblique angle; none extend beyond the dike margin. A total of perhaps 15 veins were found over a strike length of 70 metres. The dike is 3 to 5 metres in width and terminates to the southwest at a fault. To the northeast the dike continues a few tens of metres to a steep drop-off but few veins occur. A metre chip sample across a set of narrow veins returned modest values for molybdenum (0.04%), perhaps due to the nugget effect in a small sample (45748).

The intrusive near its margin is cut by occasional drusy quartz veins, and aplitic and alaskitic dikes that carry minor pyrite and traces of molybdenite. One sample of pyritic, molybdenite-bearing intrusive (sample 45746, Figure 7) also returned a response in silver (27 g/t) and copper (.05%).

British Columbia

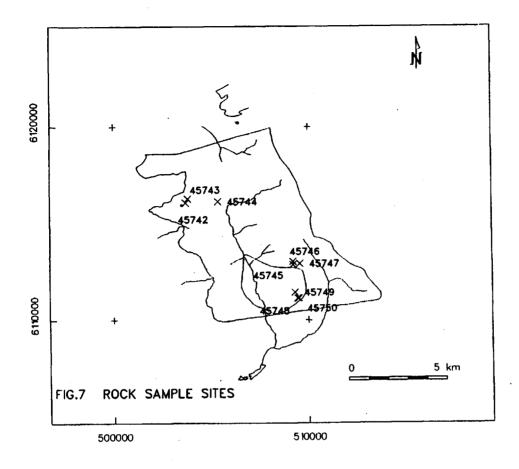


Figure 7. Rock sample sites.

UT	M	Sample	Sample	Rock	Zn	Cu	Pb	Ni	Co	Ag	Mo	Au
North	East	No.	Туре	Туре	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ppb
6116050	503700	45742	Select	Q-Py V in SLSN	135	15	16	2	146	3		40
6116250	503800	45743	Select	"Black" Shale	91	40	18	32	38	0	-	10
6116100	505350	45744	Select	Fine Py Dike	26	3	27	3	30	1	-	65
6112850	509200	45745	Float	Q-Py-C Y GRDR	124	179	96	0	84	2	47	45
6113000	509200	45746	Select	PY GRDR	157	511	211	0	85	27	1153	40
6112900	509550	45747	Select	Silicified SLSN	59	545	14	37	80	2	6	5
6111100	509450	45748	Chip	QV in dike	-	-	•	-	-	0	415	5
6111400	509300	45749	Select	Py-Mo GRDR	-	-	-	-	-	2	1600	10
6111100	509500	45750	Select	QV in dike	-	-	-	-	-	2	318	5
Zn=ZINC Cu=COPPER Pb=LEAD Ni=NICKEL			Co=COB Ag=SILV Mo=MOI Au=GOL	ER LYBDENITE				-GRAN SILTST ARTZ	ODIOR ONE	ITE		-

TABLE 4ROCK SAMPLES: ELEMENT VALUES

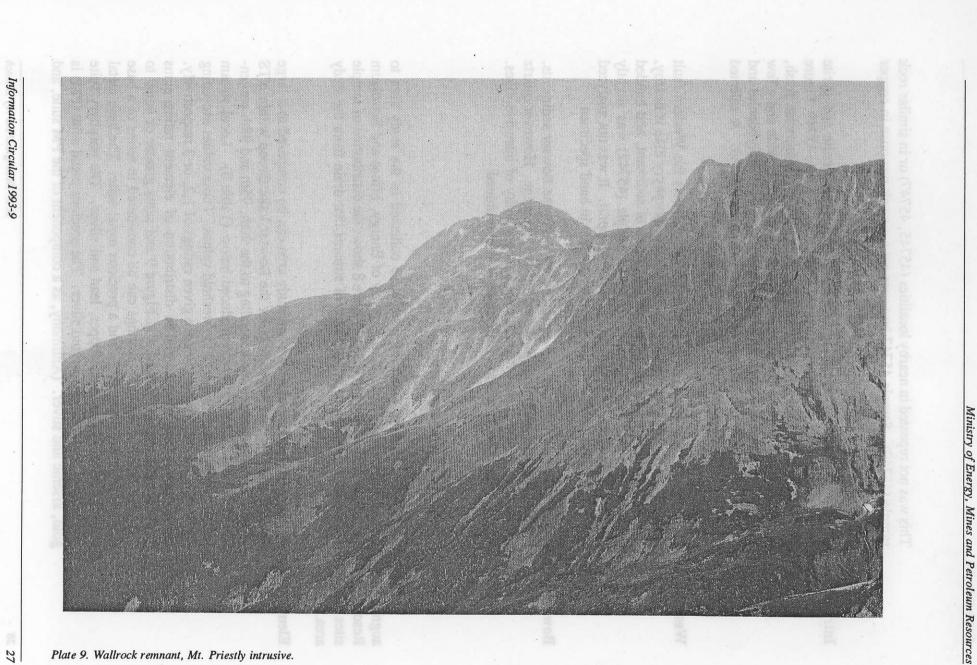


Plate 9. Wallrock remnant, Mt. Priestly intrusive.

ŧ,

This was not repeated in nearby localities (45745, 45747) or in similar rock sample (45749). Sample 45747 however gave a weak response in copper (0.05%).

- Intrusive: A molybdenum showing consisting of disseminated molybdenite and pyrite occurs within granodiorite at the head of a rock gully (sample 45749, Figure 7). Exposure is good and consists of a patchy zone in otherwise fresh, equigranular intrusive. The zone is less than half a meter wide and a few meters long. Surrounding exposures contain traces of molybdenite and signs of very weak shearing. No other zones were found. A selected sample (45749) assayed 0.16% molyhdenum.
- Western fault: A quartz breccia zone, up to 4 meters wide, parallels the Western fault and is traceable for over 150 meters. A feldspar porphyry dike is nearby. The vein consists of quartz cemented fragments of sediment, and banded quartz with disseminated pyrite. A select sample (45742) was slightly anomalous in silver (3.2 ppm) and cobalt (146 ppm). It was not analyzed for molybdenum. Molybdenite was not apparent in hand specimen.
- Bowser sediments: Erratic thin lacy quartz veining is common in the Bowser sediments. No spatial relationship with intrusive rocks is apparent. However quartz breccias were seen more often than not in the vicinity of intrusive dikes. These breccias were barren of sulphides where examined.

Stream Sediment Geochemistry

Eleven additional stream sediment samples were collected in the study area to augment those already collected as part of the Ministry of Energy, Mines and Petroleum Resources, regional geochemical survey (RGS). Figure 8 shows the distribution of sample sites relevant to the study. It includes sample sites of streams that drain from the study area.

Element Evaluation: Analytical results from the study area can be compared to a large data set of 1213 sample locations for the Bowser Lake Group within NTS 103P. Threshold values corresponding to the 90th, 95th and 98th percentiles for the regional set are reproduced below (Table 5). Local stream sediment values are compared to threshold values. Those values exceeding the 90th, 95th, 98th percentiles are given ratings of 1,2, or 3 respectively. These ratings are summed. The distribution of element rating sums (multielement ratings) is shown in Figure 9 and sums greater or equal to three are listed in Table 6. Ratings can be considered in terms of a base metal suite, a porphyry suite, and a precious metal suite. The base metal suite (BM) comprises zinc, copper, lead and silver. The porphyry suite (PO) is molybdenum, copper and silver. The precious metal suite (PM) is gold, arsenic and silver. (Antimony, as a component of the PM suite, and

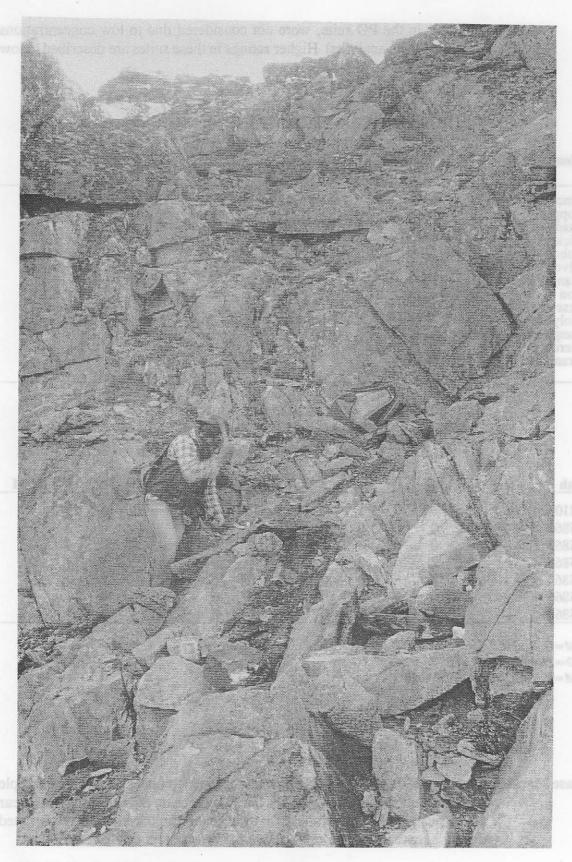


Plate 10. Site of molybdenite showing in rocks of Mt. Phillipa intrusive.

British Columbia

tungsten, in the PO suite, were not considered due to low concentrations and incomplete analyses) Higher ratings in these suites are described below as anomalies.

Element	Total No. of Samples	90th	Percentile 95th	98th
Zinc	1213	184	230	310
Copper	1213	72	86	11 0
Lead	1213	14	18	33
Nickel	1213	123	140.	152
Cobalt	1213	27	32	41
Silver	1213	0.3	0.5	0.8
Manganese	1213	2700	4400	8700
Iron	1213	4.9	5.3	5.85
Arsenic	1213	32	55	80
Molybdenum	1213	3	5	8
Tungsten	1213	2	4	<u>9</u>
Mercury	1213	170	200	260
Uranium	1213	2	3	5
		ppm	ppm	ppm

TABLE 5RGS SAMPLE SET: THRESHOLD VALUES

TABLE 6
ANOMALOUS SAMPLES: ELEMENT RATINGS
(see text for explanation)

Lab No.	Zn	Cu	Pb	Ni	Co	Ag	Mo	As	Au	SUM	BM	PO	PM
781037	1	2	0	0	3	1	0	2	0	9	4	3	3
45860	0	0	0	0	0	0	3	0	0	3	-	3	-
45862	0	0	0	0	0	0	3	0	0	3	-	3	-
45863	2	0	2	0	2	1	0	1 .	0	8	5	1	2
45865	1	0	2	0	0	0	0	0	0	3	3	-	-
45866	0	0	0	0	0	0	3	0	0	3	3	-	-
45868	0	1	1	3	2	0	0	0	0	7	2	-	-

BM=BASE METAL SUITE PO=PORPHYRY SUITE PM=PRECIOUS METAL SUITE

Anomalies

Base Metal Suite: Sample 781037 is weakly anomalous in zinc-copper-silver. The sample site is just outside the north end of the study area on Seaskirnish Creek near Mt. Priestly. No mineralization to account for the anomaly was noted during a traverse on the ridge above the headwaters of the creek.

A weak zinc-lead-silver anomaly is present at the head of Crater Creek

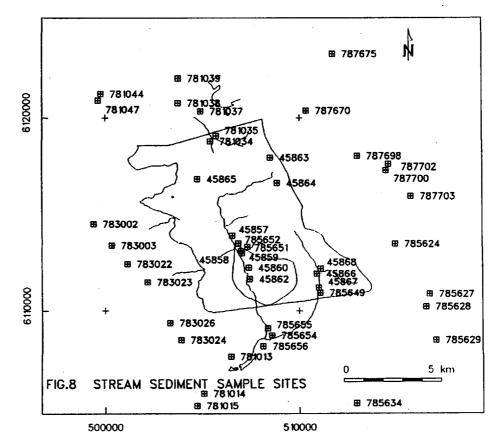


Figure 8. Stream sediment sample sites.

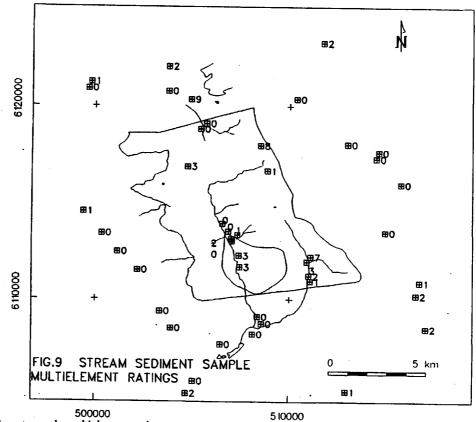


Figure 9. Stream sediment sample multielement ratings.

(sample 45863). Nearby are dark pyritic shales which tend to have elevated base metal and silver values. These are likely responsible for the higher values.

Porphyry Suite: A molybdenum anomaly is recognized in sample 45866 downstream of bedrock sample 45746 at the north end of the intrusive. The anomaly is about twice the 95th percentile for a granitic source.

Samples 45860, 45862 which reflect drainage from the core of the intrusive, are anomalous in molybdenum. Sample 45860 at 48 ppm is six times the 95th percentile or thrice the 98th percentile and well over detection limits of 1 ppm. This must be considered highly anomalous.

Two other samples with sediment derived from the hornfelsed border of the intrusive are not anomalous.

In summary three of five sampled drainages peripheral to the intrusive are anomalous in molybdenum. One sample is highly anomalous.

Precious Metal Suite: Gold is not anomalous in either stream silts or bedrock where sampled. A weak silver-arsenic anomaly is present in sample 781037 described above.

MINERAL POTENTIAL

Deposit Type Re-evaluation

Geologic mapping, prospecting, sampling, and delineation of major structures has resulted in a re-evaluation of the possible types of deposits and resources within the study area.

- Lack of gold geochemical response and historical data (*i.e.* no gold placer in streams draining the area) indicate that there is little potential for gold bearing precious metal veins.
- Younger coal-bearing strata are not preserved against the Western Fault as they are to the south in NTS 103 I/15. There is no coal potential.
- There is limited porphyry molybdenum and polymetallic vein potential.
- There is geothermal potential.

Porphyry molybdenum potential

The Mt. Phillipa intrusive is geochemically anomalous in molybdenum and

selective samples from the east and north side of the intrusive carry modest amounts of molybdenite.

Certain geologic features characterize significant porphyry molybdenum deposits; these must be considered to evaluate potential. According to Carter (1981) these features include:

- base metal sulphide-bearing late quartz-carbonate veins
- evidence of multi-stage intrusion, and porphyritic textures
- large scale alteration in patterns (pyritic, potassic)
- several stages of molybdenum mineralization.

The Mt. Phillipa intrusive lacks these characteristic features. There is no variation in texture or mineralogy that would suggest separate intrusive phases are present. There is some sericitic, silicic, pyritic alteration but it is weak and patchy. Disseminated mineralization within the intrusive is localized and the potential volume of mineralized rock very small. Molybdenite occurs in rare quartz vein sets but these are confined to a dike. They do not form a of appreciable density and size.

Other showings in the area have not been examined since the early 1980s. Some of them have better multielement geochemical signatures for porphyry mineralization. For example the SLC claims have an associated stream sediment anomaly in tungsten, copper and molybdenum.

The intrusive does not have any defined association with precious metals in stream geochemistry but a single bedrock sample carried silver. Gold values are quite low, not exceeding 11 parts per billion in stream sediments or 65 ppb in hand specimen.

It is concluded the potential for a larger porphyry molybdenum deposit is low, but the potential is moderate for a smaller deposit.

Polymetallic Vein Potential

The potential for a small base metal vein deposit is moderate, based on rather weak geochemical anomalies. The best host structure would be the Western fault.

Geothermal Potential

As described previously the Western fault forms the east margin of a major fault zone whose topographic expression is the Kalum-Kitimat Valley. The volcanic cone at Aiyansh and the hot springs at Lakelse, south of Terrace, indicate an active part of the zone (Duffell and Souther, 1964). The Lakelse hotsprings are the hottest in B.C. (186° Fahrenheit). No earthquake activity is ascribable to the zone but available data is too recent to be conclusive.

South of the study area Skeena Group sediments are preserved as fault bounded segments within the Western fault zone. There are as well a number of elongate (dike-like) emplacements of Tertiary intrusives. Fracturing and faulting in the zone together with hotsprings and recent volcanism suggests geothermal potential is present in the Kalum-Ki-timat valley.

This potential extends into the study area along the Western fault. The area immediately north (and south) of the volcanic cone should be considered to have moderately high potential.

CONCLUSIONS

Ground observations have improved the mineral status of the area. Several showings in molybdenite were found. The potential for a molybdenum deposit is moderate, but a small deposit is more likely. The Mt. Phillipa intrusive lacks indications that an extensive or pervasive hydrothermal system developed.

At this time, large low grade molybdenum deposits in British Columbia remain unexploited. Further there is no exploration activity on molybdenite showings nearby.

There is moderately high potential for a geothermal resource.

Although future metal exploration is possible the likelihood of a major deposit is small.

APPENDIX

Lithogeochemical Analyses

Rock samples collected for assay were passed through a jaw crusher, split and then pulverized in a tungsten-carbide ring mill. Multi-element analysis was done by Eco-Tech Laboratories of Kamloops B.C. Samples were analyzed by Inductively Coupled Plasma Emission Spectroscopy (ICP-ES). In addition three samples were analyzed for silver and molybdenum by atomic absorption spectroscopy (AAS). Gold was analyzed by fire assay with atomic absorption finish (FA-AAS).

Geochemical detection limits for each element is listed below in Table 7, together with the analytical method utilized.

ELEMENT	METHOD	DETECTION LIMIT
Zn	ICP	- .
Cu	ICP	-
Pb	ICP	2 ppm
Ni	ICP	1 ppm
Со	ICP	1 ppm
Ag	ICP	0.1 ppm
Mn	ICP	1 ppm
Fe	ICP	0.01%
Мо	ICP	1 ppm
Bi	ICP	5 ppm
Ba	ICP	2 ppm
V	ICP	2 ppm
Au	AAS	5 ppb

TABLE 7ROCK SAMPLES: DETECTION LIMITS

Stream Sediment Analyses

Samples collected complement data from a previously released Regional Geochemical Survey for 103P and 103I. Samples were prepared for analysis (sieving to -80 mesh) by the Analytical Services Laboratory, Geological Services Branch, Ministry of Energy, Mines and Petroleum Resources. Samples were analyzed by induced neutron activation (INNA) or by atomic absorption spectrometry (AAS) according to the suitability of the method for the element sought. Activation Laboratories Ltd. performed the INNA analysis. Gold was done by fire assay (FA) preconcentration with an AAS finish. Archived samples from 1978 have recently been re-analyzed for gold and other elements by INNA. Results were available and this data is included in the geochemical tables below (Tables 8, 9). Geochemical detection limits for each element is listed below in Table 8 together with the analytical method utilized.

Element	Method	Detection Limit
Zn	AAS	2 ppm
Cu	AAS	2 ppm
Pb ·	AAS	4 ppm
Ni	AAS	5 ppm
Co	INNA	1 ppm
Ag	AAS	0.2 ppm
Mn	AAS	5 ppm
Fe	INNA	0.01%
As	INNA	0.5 ppm
Мо	INNA	1 ppm
Hg	INNA	1 ppm
Aŭ	INNA/AAS	2 ppb/5 ppb

	TABLE 8	
STREAM SEDIMENT	SAMPLES:	DETECTION LIMITS

Nisga'a Memorial Lava Bed Recreation Area Legal Boundary Description

All those parcels or tracts of Crown land, together with all that foreshore or land covered by water, situated in Cassiar District and lying within the following described boundaries:

Commencing at the summit of Mount Hoeft;

Thence northeasterly in a straight line to the summit of Mount Priestly, being a point on the easterly boundary of the watershed of Seaskinnish Creek;

Thence southerly along the easterly boundary of the watershed of Seaskinnish Creek and continuing in a general southeasterly direction along the southeasterly boundary of the watershed of Creater Creek to a point on the 1981 metre (6500 foot) contour located 5150 metres distant on a bearing of 112 degrees and 30 minutes from the summit of Mount Philippa;

Thence southwesterly in a straight line on a bearing of 263 degrees, a distance of 8325 metres to a point on the 1372 metre (4500 foot) contour;

Thence in a general northeasterly direction along said 1372 metre (4500 foot) contour to a point thereon lying due west of the summit of Mount Hoeft;

Thence due east to said summit of Mount Hoeft, being the point of commencement.

The whole containing 6440 hectares, more or less.

Note: The above is a reproduction of the legal boundary description. It is presented as a guide only and does not supersede the original legal description.

No. Noth East Type ppm ppm<	Sample	UTI	M	Rock	Zn	Cu	Pb	Ni	Co	Ag	Мо	As	Au
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	781013	6107639	506470										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	781014				146	48							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	781015	6105100	504720		178				25				5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					114	34	-7	43	18	0.2	1	12.0	3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						44	6	44	20	0.3	1	18.0	3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				SLSN		94	8	74	46	0.4	3	68.0	8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								62			1		3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			500346										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									18				0
783026 6109368 50348 SLSN 108 36 8 56 16 0.2 1 13.0 0 785624 6113495 514924 SLSN 112 48 8 100 19 0.1 1 12.0 6 785625 6110892 516709 SLSN 110 42 5 130 0.1 2 45.0 6 785626 6108505 517040 SLSN 120 42 9 124 24 0.1 2 45.0 6 785626 6108505 517040 SLSN 126 62 9 124 24 0.1 2 45.0 6 785656 6110943 511073 SLSN 126 74 10 80 22 0.1 1 12.0 6 785656 6110943 510737 SLSN 126 42 6 59 14 0.1 1 12.0 2 785656 6109178 SUSN 126 42 6 59 14									25				3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		6108500		SLSN									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			503348	SLSN		36							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									19				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				SLSN									6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				SLSN									5
785634 6105235 512944 SLSN 126 62 9 132 24 0.1 1 24.0 6 785649 6110943 511073 SLSN 150 76 10 82 24 0.2 1 20.0 7 785651 6113318 507327 SLSN 192 70 4 84 26 0.2 1 20.0 7 785651 6113507 506857 SLSN 124 48 6 64 15 0.1 1 14.0 0 785654 6108731 508856 SLSN 126 42 6 59 14 0.1 1 12.0 2 785656 6108178 508137 SLSN 134 52 10 106 20 0.1 1 18.0 11 787670 6120370 510345 SLSN 138 38 6 39 15 0.1 1 18.0 11 78769 6118048 512973 SLSN 132 38 4 </td <td>/85628</td> <td>6110224</td> <td>516521</td> <td>SLSN</td> <td></td> <td>46</td> <td></td> <td></td> <td></td> <td></td> <td>2</td> <td></td> <td>6</td>	/85628	6110224	516521	SLSN		46					2		6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		6108505											6
785650 6110943 511073 SLSN 150 76 10 82 24 0.2 1 20.0 7 785651 6113318 507327 SLSN 124 48 6 64 15 0.1 1 14.0 0 785654 6108731 508575 SLSN 124 48 6 64 15 0.1 1 14.0 0 785656 61080731 508375 SLSN 128 56 8 82 18 0.1 1 12.0 2 785656 6108178 508137 SLSN 134 52 10 106 20 0.1 2 2.0 7 786706 6118048 512973 SLSN 134 52 10 16 6 13 75 0 0.2 1 6.0 6 787700 6117310 514454 SLSN 132 38 4 80 26 0.1 1 12.0 5 5 7 76 10 6 1		6105235		SLSN					24				6
785651 6113318 507327 SLSN 192 70 4 84 26 0.2 1 12.0 6 785652 6113507 506857 SLSN 124 48 6 64 15 0.1 1 14.0 0 785654 6108731 506856 SLSN 122 42 6 59 14 0.1 1 12.0 2 785656 6108178 508137 SLSN 134 52 10 106 20 0.1 2 22.0 7 787670 6120370 510345 SLSN 138 38 6 39 15 0.1 1 18.0 11 787670 6118048 512973 SLSN 160 64 13 75 20 0.2 1 7.0 6 787670 6118048 512973 SLSN 132 38 4 80 26 0.1 2 2.0 3 787702 6117641 514587 SLSN 132 38 4													
785652 6113507 506857 SLSN 124 46 6 64 15 0.1 1 14.0 0 785654 6108731 508586 SLSN 128 56 8 82 18 0.1 1 23.0 6 785655 6109099 508375 SLSN 126 42 6 59 14 0.1 1 22.0 7 785656 6108178 508137 SLSN 134 52 10 106 20 0.1 2 22.0 7 787670 6120370 510345 SLSN 138 38 6 39 15 0.1 1 18.0 11 787670 6117310 514454 SLSN 132 38 480 26 0.1 2 2.0 3 787702 6117300 514587 SLSN 132 52 8 66 18 0.1 1 12.0 5 45857 6113000 507500 SLSN 163 40 9 69 <td>782020</td> <td>6110943</td> <td></td> <td>SLON</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>1</td>	782020	6110943		SLON							-		1
785654 6108731 508586 SLSN 128 56 8 82 18 0.1 1 23.0 6 785655 6109099 508375 SLSN 126 42 6 59 14 0.1 1 12.0 2 785656 6108178 508375 SLSN 134 52 10 106 20 0.1 2 22.0 7 787670 6120370 510345 SLSN 138 38 6 39 15 0.1 1 18.0 11 787670 6118048 512973 SLSN 164 66 12 72 20 0.1 1 50 5 78700 6117310 514454 SLSN 132 38 4 80 26 0.1 2 2.0 3 78700 6117300 506550 SLSN 132 52 8 66 18 0.1 1 12.0 5 78703 6113900 506550 SLSN 180 72 9											-		
785655 6109099 508375 SLSN 126 42 6 59 14 0.1 1 12.0 2 785656 6108178 508137 SLSN 134 52 10 106 20 0.1 2 22.0 7 787670 6120370 510345 SLSN 138 38 6 39 15 0.1 1 18.0 11 787670 6118048 512973 SLSN 160 64 13 75 20 0.2 1 6.0 6 787699 6118048 512973 SLSN 164 66 12 72 20 0.1 1 5.0 5 787702 6117641 5144547 SLSN 132 38 4 80 26 0.1 1 12.0 5 45857 611300 507600 SLSN 131 40 9 69 18 0.1 1 17.0 2 45866 6112250 507400 GRDR 65 23 6													
785656 6108178 508137 SLSN 134 52 10 106 20 0.1 2 22.0 7 787670 6120370 510345 SLSN 138 38 6 39 15 0.1 1 18.0 11 787698 6118048 512973 SLSN 160 64 13 75 20 0.2 1 6.0 6 787699 6118048 512973 SLSN 164 66 12 72 20 0.1 1 5.0 5 787702 6117641 5144587 SLSN 132 38 4 80 26 0.1 2 2.0 3 787703 6115987 515728 SLSN 132 52 8 66 18 0.1 11 12.0 5 45857 6113000 507505 SLSN 180 72 9 90 25 0.1 1 17.0 2 45860 611250 507400 GRDR 65 23 6													0
787670 6120370 510345 SLSN 138 38 6 39 15 0.1 1 18.0 11 787698 6118048 512973 SLSN 160 64 13 75 20 0.2 1 6.0 6 787698 6118048 512973 SLSN 164 66 12 72 20 0.1 1 5.0 5 787700 6117310 514454 SLSN 132 38 4 80 26 0.1 2 2.0 3 787702 6117641 514587 SLSN 132 52 8 66 18 0.1 1 12.0 5 45857 6113900 506550 SLSN 103 40 9 69 18 0.3 0 8.5 2 45858 6113000 507000 SLSN 180 72 9 90 25 0.1 4 45859 611250 507450 GRDR 65 23 6 12 8 0.1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>44</td><td></td><td></td><td></td><td></td><td>. 1</td><td></td><td>4</td></td<>						44					. 1		4
787698 6118048 512973 SLSN 160 64 13 75 20 0.2 1 6.0 6 787699 6118048 512973 SLSN 164 66 12 72 20 0.1 1 5.0 5 787700 6117641 514454 SLSN 132 38 4 80 26 0.1 2 2.0 3 787702 6117641 514587 SLSN 144 60 10 74 22 0.2 1 17.0 6 787703 6115987 515728 SLSN 132 52 8 66 18 0.1 1 12.0 5 45857 6113000 507000 SLSN 191 74 12 94 25 0.3 1 19.0 4 45858 6113000 507000 GRDR 65 23 6 12 8 0.1 48 6.6 2 45860 611250 507450 GRDR 40 11 6 <													
787699 6118048 512973 SLSN 164 66 12 72 20 0.1 1 5.0 5 787700 6117310 514454 SLSN 132 38 4 80 26 0.1 2 2.0 3 787702 6117641 514587 SLSN 144 60 10 74 22 0.2 1 17.0 6 787703 6115987 515728 SLSN 132 52 8 66 18 0.1 1 12.0 5 45857 6113900 506550 SLSN 163 40 9 69 18 0.3 0 8.5 2 45858 6113000 507050 SLSN 180 72 9 90 25 0.1 1 17.0 2 45860 6112250 507400 GRDR 65 23 6 12 8 0.1 48 6.6 2 45864 6116650 507450 GRDR 40 11 6 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>11</td></td<>											-		11
787700 6117310 514454 SLSN 132 38 4 80 26 0.1 2 2.0 3 787702 6117641 514587 SLSN 132 32 8 4 80 26 0.1 2 2.0 3 787703 6117641 514587 SLSN 132 52 8 66 18 0.1 1 12.0 5 45857 6113000 506550 SLSN 163 40 9 69 18 0.3 0 8.5 2 45858 6113000 507050 SLSN 180 72 9 90 25 0.1 1 17.0 2 45862 611650 507450 GRDR 65 23 6 12 8 0.1 48 6.6 2 45863 6117950 508500 SLSN 162 69 15 94 20 0.2 1 28.0 2 45864 611650 508450 SLSN 188 54 28 72<													5
787702 6117641 514587 SLSN 144 60 10 74 22 0.2 1 17.0 6 787703 6115987 515728 SLSN 132 52 8 66 18 0.1 1 12.0 5 45857 6113900 506550 SLSN 163 40 9 69 18 0.3 0 8.5 2 45858 6113000 507050 SLSN 191 74 12 94 25 0.3 1 19.0 4 45859 6113000 507050 SLSN 180 72 9 90 25 0.1 1 17.0 2 45860 6112250 507400 GRDR 65 23 6 12 8 0.1 48 6.6 2 45862 611650 508500 SLSN 263 65 22 91 33 0.4 0.1 2.8.0 2 45865 6116850 504750 SLSN 188 54 28													2
787703 6115987 515728 SLSN 132 52 8 66 18 0.1 1 12.0 5 45857 6113900 506550 SLSN 163 40 9 69 18 0.3 0 8.5 2 45858 6113100 507000 SLSN 191 74 12 94 25 0.3 1 19.0 4 45859 6113000 507050 SLSN 180 72 9 90 25 0.1 1 17.0 2 45860 6112250 507400 GRDR 65 23 6 12 8 0.1 48 6.6 2 45862 6111650 507450 GRDR 40 11 6 5 5 0.1 21 2.5 2 45863 6116650 508500 SLSN 188 54 28 72 26 0.2 5 26.0 8 45865 6116850 504750 SLSN 188 54 28 7				SLSN									6
45858 6113100 507000 SLSN 191 74 12 94 25 0.3 1 19.0 4 45859 6113000 507050 SLSN 180 72 9 90 25 0.1 1 17.0 2 45860 6112250 507400 GRDR 65 23 6 12 8 0.1 48 6.6 2 45862 6111650 507450 GRDR 40 11 6 5 5 0.1 21 2.5 2 45863 6117950 508500 SLSN 263 65 22 91 33 0.4 0 38.0 3 45864 6116650 508850 SLSN 162 69 15 94 20 0.2 1 28.0 2 45865 6116850 504750 SLSN 188 54 28 72 26 0.2 5 26.0 8 45866 6112203 511000 SLSN 166 81 16 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Š</td></td<>													Š
45858 6113100 507000 SLSN 191 74 12 94 25 0.3 1 19.0 4 45859 6113000 507050 SLSN 180 72 9 90 25 0.1 1 17.0 2 45860 6112250 507400 GRDR 65 23 6 12 8 0.1 48 6.6 2 45862 6111650 507450 GRDR 40 11 6 5 5 0.1 21 2.5 2 45863 6117950 508500 SLSN 263 65 22 91 33 0.4 0 38.0 3 45864 6116650 508850 SLSN 162 69 15 94 20 0.2 1 28.0 2 45865 6116850 504750 SLSN 188 54 28 72 26 0.2 5 26.0 8 45866 6112203 511000 SLSN 166 81 16 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2</td></td<>													2
45859 6113000 507050 SLSN 180 72 9 90 25 0.1 1 17.0 2 45860 6112250 507400 GRDR 65 23 6 12 8 0.1 48 6.6 2 45862 6111650 507450 GRDR 40 11 6 5 5 0.1 21 2.5 2 45863 6117950 508500 SLSN 263 65 22 91 33 0.4 0 38.0 3 45864 6116650 508850 SLSN 162 69 15 94 20 0.2 1 28.0 2 45865 6116850 504750 SLSN 188 54 28 72 26 0.2 5 26.0 8 45865 6111205 510900 GRDR 141 55 7 38 17 0.3 18 30.0 2 45868 6112200 5111000 SLSN 165 75 16 <t< td=""><td></td><td>6113100</td><td></td><td>SLSN</td><td></td><td>74</td><td></td><td></td><td></td><td></td><td></td><td></td><td>4</td></t<>		6113100		SLSN		74							4
45860 6112250 507400 GRDR 65 23 6 12 8 0.1 48 6.6 2 45862 6111650 507450 GRDR 40 11 6 5 5 0.1 21 2.5 2 45863 6117950 508500 SLSN 263 65 22 91 33 0.4 0 38.0 3 45864 6116650 508850 SLSN 162 69 15 94 20 0.2 1 28.0 2 45865 6116850 504750 SLSN 188 54 28 72 26 0.2 5 26.0 8 45865 6111950 510900 GRDR 141 55 7 38 17 0.3 18 30.0 2 45866 6111205 511000 SLSN 166 81 16 113 26 0.1 1 26.0 5 781039 6122037 503764 SLSN 165 75 16		6113000		SLSN					25				2
45863 6117950 508500 SLSN 263 65 22 91 33 0.4 0 38.0 3 45864 6116650 508850 SLSN 162 69 15 94 20 0.2 1 28.0 2 45865 6116850 504750 SLSN 188 54 28 72 26 0.2 5 26.0 8 45866 6111950 510900 GRDR 141 55 7 38 17 0.3 18 30.0 2 45867 6111205 511000 SLSN 166 81 16 113 26 0.1 1 26.0 8 45868 6112200 511100 SLSN 165 75 16 174 37 0.2 1 26.0 5 781039 6122037 503764 SLSN 176 68 4 48 32 0.2 5 24.0 3 787675 6123307 511700 SLSN 184 58 19 <td></td> <td>6112250</td> <td></td> <td>2</td>		6112250											2
45863 6117950 508500 SLSN 263 65 22 91 33 0.4 0 38.0 3 45864 6116650 508850 SLSN 162 69 15 94 20 0.2 1 28.0 2 45865 6116850 504750 SLSN 188 54 28 72 26 0.2 5 26.0 8 45866 6111950 510900 GRDR 141 55 7 38 17 0.3 18 30.0 2 45867 6111205 511000 SLSN 166 81 16 113 26 0.1 1 26.0 8 45868 6112200 511100 SLSN 165 75 16 174 37 0.2 1 26.0 5 781039 6122037 503764 SLSN 176 68 4 48 32 0.2 5 24.0 3 787675 6123307 511700 SLSN 184 58 19 <td></td> <td></td> <td></td> <td></td> <td></td> <td>īī</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2</td>						īī							2
45864 6116650 508850 SLSN 162 69 15 94 20 0.2 1 28.0 2 45865 6116850 504750 SLSN 188 54 28 72 26 0.2 5 26.0 8 45865 6111950 510900 GRDR 141 55 7 38 17 0.3 18 30.0 2 45867 6111205 511000 SLSN 166 81 16 113 26 0.1 1 26.0 8 45868 6112200 5111000 SLSN 165 75 16 174 37 0.2 1 26.0 8 45868 6112200 511100 SLSN 165 75 16 174 37 0.2 1 26.0 5 781039 6122037 503764 SLSN 176 68 4 48 32 0.2 5 24.0 3 787675 6123307 511700 SLSN 184 58 19 </td <td></td> <td></td> <td></td> <td>SLSN</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3</td>				SLSN									3
45865 6116850 504750 SLSN 188 54 28 72 26 0.2 5 26.0 8 45866 6111950 510900 GRDR 141 55 7 38 17 0.3 18 30.0 2 45866 6111205 511000 SLSN 166 81 16 113 26 0.1 1 26.0 8 45867 611200 5111000 SLSN 165 75 16 174 37 0.2 1 26.0 8 45868 6112200 5111000 SLSN 165 75 16 174 37 0.2 1 26.0 5 781039 6122037 503764 SLSN 165 75 16 174 37 0.2 1 26.0 5 781039 6125195 512227 BSLT 30 14 1 4 4 0.1 1 2.0 0 781044 6121236 499788 SLSN 210 56 10 <td>45864</td> <td>6116650</td> <td></td> <td></td> <td></td> <td>69</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2</td>	45864	6116650				69							2
45866 6111950 510900 GRDR 141 55 7 38 17 0.3 18 30.0 2 45867 6111205 511000 SLSN 166 81 16 113 26 0.1 1 26.0 8 45868 6112200 511100 SLSN 165 75 16 174 37 0.2 1 26.0 5 781039 6122037 503764 SLSN 176 68 4 48 32 0.2 5 24.0 3 787675 6123307 511700 SLSN 184 58 19 94 27 0.1 2 10.0 11 787675 6125195 512227 BSLT 30 14 1 4 4 0.1 1 2.0 0 781044 6121236 499788 SLSN 210 56 10 69 26 0.3 1 11.0 2 783002 6114517 499409 SLSN 72 16 2	45865	6116850	504750	SLSN	188			72					8
45867 6111205 511000 SLSN 166 81 16 113 26 0.1 1 26.0 8 45868 6112200 511100 SLSN 165 75 16 174 37 0.2 1 26.0 5 781039 6122037 503764 SLSN 176 68 4 48 32 0.2 5 24.0 3 787675 6123037 501764 SLSN 184 58 19 94 27 0.1 2 10.0 11 787675 6123037 511700 SLSN 184 58 19 94 27 0.1 2 10.0 11 787678 6125195 512227 BSLT 30 14 1 4 4 0.1 1 2.0 0 781044 6121236 499788 SLSN 210 56 10 69 26 0.3 1 11.0 2 783002 6114517 499643 SLSN 72 16 2	45866							38					2
45868 6112200 511100 SLSN 165 75 16 174 37 0.2 1 26.0 5 781039 6122037 503764 SLSN 176 68 4 48 32 0.2 5 24.0 3 787675 6123307 511700 SLSN 184 58 19 94 27 0.1 2 10.0 11 787675 6123307 511700 SLSN 184 58 19 94 27 0.1 2 10.0 11 787678 6125195 512227 BSLT 30 14 1 4 4 0.1 1 2.0 0 781044 6121236 499788 SLSN 210 56 10 69 26 0.3 1 11.0 2 781047 6120887 499643 SLSN 72 16 2 28 15 0.3 4 9.0 0 78500 6129794 491630 SLSN 86 28 4	45867	6111205	511000	SLSN	166	81	16	113	26	0.1			8
781039 6122037 503764 SLSN 176 68 4 48 32 0.2 5 24.0 3 787675 6123307 511700 SLSN 184 58 19 94 27 0.1 2 10.0 11 787675 6123307 511700 SLSN 184 58 19 94 27 0.1 2 10.0 11 787678 6125195 512227 BSLT 30 14 1 4 4 0.1 1 2.0 0 781044 6121236 499788 SLSN 210 56 10 69 26 0.3 1 11.0 2 781047 6120887 499643 SLSN 134 38 7 56 17 0.2 1 11.0 2 783002 6114517 499409 SLSN 72 16 2 28 15 0.3 4 9.0 0 785500 6129794 491630 SLSN 86 28 4	45868		511100		165		16	174	37	0.2	1	26.0	5
787675 6123307 511700 SLSN 184 58 19 94 27 0.1 2 10.0 11 787678 6125195 512227 BSLT 30 14 1 4 4 0.1 1 2.0 0 781044 6121236 499788 SLSN 210 56 10 69 26 0.3 1 11.0 2 781047 6120887 499643 SLSN 134 38 7 56 17 0.2 1 11.0 2 783002 6114517 499409 SLSN 72 16 2 28 15 0.3 4 9.0 0 785500 6129794 491630 SLSN 86 28 4 54 14 0.1 1 10.0 5 SLSN= SILTSTONE Zn=ZINC Co=COBALT Ag=SILVER Ag=SILVER BSLT= BASALT Pb=LEAD Mo=MOLYBDENITE VBDENITE			503764		176	68	4	48	32	0.2	5	24.0	3
787678 6125195 512227 BSLT 30 14 1 4 4 0.1 1 2.0 0 781044 6121236 499788 SLSN 210 56 10 69 26 0.3 1 11.0 2 781047 6120887 499643 SLSN 134 38 7 56 17 0.2 1 11.0 2 783002 6114517 499409 SLSN 72 16 2 28 15 0.3 4 9.0 0 785500 6129794 491630 SLSN 86 28 4 54 14 0.1 1 10.0 5 SLSN= SILTSTONE Zn=ZINC Co=COBALT GRDR= GRANODIORITE Cu=COPPER Ag=SILVER Ag=SILVER Heiles SILTE Heiles SI				SLSN	184	58	19	94	27	0.1	2	10.0	
781044 6121236 499788 SLSN 210 56 10 69 26 0.3 1 11.0 2 781047 6120887 499643 SLSN 134 38 7 56 17 0.2 1 11.0 2 783002 6114517 499409 SLSN 72 16 2 28 15 0.3 4 9.0 0 785500 6129794 491630 SLSN 86 28 4 54 14 0.1 1 10.0 5 SLSN= SILTSTONE Zn=ZINC Co=COBALT GRDR= GRANODIORITE Cu=COPPER Ag=SILVER Ag=SILVER BSLT= BASALT Pb=LEAD Mo=MOLYBDENITE I			512227								1	2.0	0
781047 6120887 499643 SLSN 134 38 7 56 17 0.2 1 11.0 2 783002 6114517 499409 SLSN 72 16 2 28 15 0.3 4 9.0 0 785500 6129794 491630 SLSN 86 28 4 54 14 0.1 1 10.0 5 SLSN= SILTSTONE Zn=ZINC Co=COBALT GRDR= GRANODIORITE Cu=COPPER Ag=SILVER BSLT= BASALT Pb=LEAD Mo=MOLYBDENITE		6121236						69	26		1		2
785500 6129794 491630 SLSN 86 28 4 54 14 0.1 1 10.0 5 SLSN= SILTSTONE GRDR= GRANODIORITE BSLT= BASALT Zn=ZINC Cu=COPPER Pb=LEAD Co=COBALT Ag=SILVER Mo=MOLYBDENITE Co=COBALT											1	11.0	
785500 6129794 491630 SLSN 86 28 4 54 14 0.1 1 10.0 5 SLSN= SILTSTONE GRDR= GRANODIORITE BSLT= BASALT Zn=ZINC Cu=COPPER Pb=LEAD Co=COBALT Ag=SILVER Mo=MOLYBDENITE 1 10.0 5									15		4		0
GRDR= GRANODIORITECu=COPPERAg=SILVERBSLT= BASALTPb=LEADMo=MOLYBDENITE	785500	6129794	491630	SLSN	86	28	4	54	14	0.1	1		5
GRDR= GRANODIORITECu=COPPERAg=SILVERBSLT= BASALTPb=LEADMo=MOLYBDENITE	5	SLSN= SILTST	ONE		Zn=ZINC	2		Co=COB	ALT				
BSLT= BASALT Pb=LEAD Mo=MOLYBDENITE	C	GRDR= GRAN	ODIORITE										
Ni=NICKEL Au=GOLD	I	BSLT= BASAL'	Т					-		ITE			
					Ni=NICK	EL	1	\$u= GOL	D				

TABLE 9 STREAM SEDIMENT SAMPLES: ELEMENT VALUES

Information Circular 1993-9

REFERENCES

Carter, N.C. (1981): Porphyry Copper and Molybdenum Deposits, West-Central British Columbia; B.C. Ministry of Energy, Mines and Petroleum Resources, Bulletin 64., 150 p.

Carter, N.C. and Grove, E.W. (1971): Geological Compilation Map of the Stewart, Anyox, Alice Arm, and Terrace Area; B.C. Ministry of Energy, Mines and Petroleum Resources, Preliminary Map 8.

Duffell, S. and Souther J.G. (1964)): Geology of Terrace Map Area (103I E 1/2); Geological Survey of Canada, Memoir 329, 117 p.

Grove, E.W. (1986): Geology and Mineral Deposits of the Unuk River-Salmon River-Anyox Area; B.C. Ministry of Energy, Mines and Petroleum Resources, Bulletin 63, 1986, 152 p.

Hanson, G. (1924): Reconnaissance Between Skeena River and Stewart; Geological Survey of Canada, Summary Report 1923, Part A, pp. 39-40.

Kindle, E.D. (1937a): Mineral Resources, Usk to Cedarvale, Terrace Area, Coast District, British Columbia; Geological Survey of Canada, Memoir 212, 63 p.

Kindle, E.D. (1937b): Mineral Resources of Terrace Area, Coast District, British Columbia; Geological Survey of Canada, Memoir 205, 60 p.

Sutherland Brown, A. (1969): Aiyansh Lava Flow, British Columbia; Canadian Journal of Earth Sciences, volume 6, pp. 1460-1468.

Van der Heyden, P. and Hill, M.L. (1985): Preliminary Geologic Map of Terrace (NTS 103I East Half); Geological Survey of Canada, Open File 1136.

Youds, J.K. (1989): Regional Landscapes for the British Columbia Parks System, B.C. Ministry of Parks, internal publication, 121 p.