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INTRODUCTION

As part of our continuing study of rapid, thorough evaluation procedures
for maulti-element stream sediment data (for example, Sinclair and
Fletcher, 1979; Matysek, et al., 1980}, we have developed a systematic,
computer-oriented method of recognizing and ranking anomalous samples.
Our detailed procedure utilizes the type and guality of data incorporated
in various regional programs undertaken by the British Columbia Ministry
of Energy, Mines and Petroleum Resources but can be adapted easily for
data for other programs.

Regional multi-element stream sediment surveys of the type carried out in
British Columbia under terms of the Uranium Reconnaissance Program
contain coded information on the principal rock unit forming the
provenance region of each sample. Consequently, the following procedure
for determining multi-element background models is intended to be applied
to sample subsets based on provenance (rock type). Rock-type coding for
this purpose is never perfect: some basins may be underlain by two or
more important rock types, other drainage basins may be miscoded, perhaps
because of the scale of geclogical base maps available. In any case it
is apparent that some apparently anomalous metal concentrations arise
from incorrect assignment of the dominant rock type or from mixing of
sediments derived from several rock types.

GENERAI. METHODOLOGY
Our general approach to recognition and ranking of anomalous samples is
summarized on Figqure 1. In brief the method involves the following

steps:

(1) Sorting of data into provenance groups, that is, predominant rock
type in drainage basin above the sample.

(2) Evaluation of simple statistics and probability graphs for each
element in each provenance group.

{3) Threshold selection using the method of Sinclair (1976} to isolate
anomalous samples from background samples.

(4) Selection of one or more elements to serve as the focus of the study
(for example, zinc).
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Figure 1. Sequential approach to anomaly recogn]tion and ranking.

(5) Backward stepwise regression of each provenance group to develop
background models for zinc in terms of other elements.

(6) Ranking individual samples in terms of (a) their contamination code
and (k) the regression model and thresholg.

(7) Output of sample information in a manner convenient for practical
use in follow-up examination.

SORTING INTO PROVENANCE GROUPS

Data for each provenance group should be dealt with separately. Means
and standard deviations of all raw and log-transformed metal abundances
provide insight into levels of abundance, dispersion, and general aspect
of population densities (histogram). Correlation coefficients indicate
metal associations of geclogical importance (for example, Sinclair and
Tessari, 1980}. If only background values are considered, these
associations commeonly reflect differences in background environments and
are not related directly to anomalous samples.

THRESHOLD SELECTION

Separation of background and anomalocus samples is essential to our method
hbecause it leads directly to statistical models for background metal
abundances. Consequently, the method of threshold recognition is
important. We have adopted the probability graph approach of Sinclair
(1976} because this procedure is systematic and has been shown by
numerous examples to provide effective thresholds for many types of
geochemical data.
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ELEMENT SELECTION

We must decide which element or elements are of direct concern to our
search problem. &Are we interested in silver-lead-zinc, copper-—
molybdenum, tungsten-uranium, or others? Of course, we may want to
investigate many associations of the sort listed, but in our approach
each association would be dealt with separately. Within a particular
metal association it may not be necessary to deal thoroughly with all
elements because some may be redundant, others may not show adequate
geochemical contrast, and still others may present limitations resulting
from analytical problems. In our case we will use zinc data as a basis
for evaluating regional silt samples in terms of silver-lead-zinc and
lead-zinc associations typical of our study area (map-area 82F).

MULTIVARIATE MODELLING OF BACKGROUND VALUES

Multiple regression has been shown by many to be an effective method of
demonstrating empirical relationships between a particular element
(dependent variable) and a group of other elements (independent
variables). 1In many cases a high proportion of the variability of the
dependent variable is explained in terms of variations in the independent
variables (Sinclair and Fletcher, 1980). Where such methods are applied
to background samples only, the abundance of a dependent variable (for
example, zinc) can be expressed as a linear combination of the abundances
{or logarithms of abundances) of many other elements to provide a
multivariate background model.

We have experimented with two approaches to the selection of samples used
to establish a multiple regression model. In our first attempts sample
selection was based on the dependent variable for a single provenance
group with only those wvalues below the threshold (based on probability
graphs) being selected., In a later refinement we edited the data base
for a single provenance group by omitting samples that were also
obviously anomalous with respect to any of the independent variables.

The specific method we use for multivariate hackground modelling is
backward, stepwise regression which starts with all independent wvariables
in the data base and sequentially drops those that make no statistically
significant contribution to explaining the wvariability of the dependent
variable, Eventually a point is reached where all remaining wvariables
are statistically significant {at the 0.05 level, for example) and an
equation is obtained of the form

Log (Zn) = B, + B3 log (X3) + B, log (X,) + By log (Xy) etc.
where B's are constant and X;'s are abundances of metal i.
RECOGNITION AND RANKING OF ANOMALOUS SAMPLES

For each sample we determine a series of ranks from 0 to 3 by comparing
the observed value of the dependent variable with the values calculated
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by each of the provenance group multivariate models. Significance of the
rank numbers is shown on Figure 2., We then calculate a 4-digit ranking
code for each sample where the first digit is the number of rock types
for which rank 3 was obtained, the second digit is the number of rock
types For which rank 2 was obtained, and so on. If there are seven rock
types all with very high zinc values (rank 3) the ranking code would be
7000; in another case rank might be (3) for two rock types, (2) for

three rock types, {1) for two rock types, and (0Q) for one rock type to
give a ranking code of 2321.

The main advantage of this procedure is as a refinement in the selection
of anomalous values relating to the probability graph procedure and the
assigning of relative priorities to anomalous samples. Values above t
{(Figure 2) are recognized as being anomalous without the aid of multiple

METAL (log ppm caic.)

0

METAL (log ppm obs.)

Figure 2. Sample ranking in retation to flelds on a plot of
observed value versus a value calculated from a multi-

varlate model.

regression. In addition, however, values below t1 that depart
substantially from the expectation according to a multiple regression
model (1 and 2 on Fiqure 2) are also out of the ordinary and warrant
examination. In particular, we are interested in those values balow tl
that are much higher than the corresponding calculated values. Such
samples are anomalous in cone element, relative to a linear combination of
other elements. On Figure 2 the suggestion is made graphically that
samples are anomalous if observed values are more than two standard
errors greater than values calculated according to the multiple
regression model.
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OUTPUT PROCEDURES

We have designed an output system by which samples can be ordered in
terms of decreasing priority for follow-up exploration., All anomalous
samples recognized by the foregoing procedures are ranked according to
the estimated likelihood of sample contamination from such factors as
known mines, man-made metallic features, or fertilizer, on a scale of 0
to 3. Our first rank of anomalous samples is based on this coded
parameter, zero contamination being of most interest. Within this group
we code a sample for each background model as 3, 2, 1, or 0O as described
previously and a 4-digit ranking code is used to list samples within each
contamination group in order of decreasing ranking code. Tocations for
each sample are listed as is the observed abundance of the dependent
variable and the sample number. These items are arranged in such a
manner as to promote efficiency of evaluation of each sample. In
addition, we use plot locations of anomalous samples with their
identification number and ranking code.

CASE HISTORY (MAP-ARFA B82F)

Multi-element data are available for sample sites in map-area 82F at an
approximate sample density of one sample per 12 square Kilometres,
Samples are analysed for zinc, lead, nickel, cobalt, manganese, copper,
mercury, tungsten, and molybdenum. Samples were grouped initially on the
basis of coding as to dominant rock type in the provenance region. Data
for each element in each provenance group were examined as a probability
graph and a threshold selected separating two populations (presumably
anomalous and background) using the method of Sinclair (1976). We chose
to examine zinc as the dependent variable described here because of the
association silver-lead-zinc in known wvein deposits in the area.
Background multivariate models for zinc in terms of other elements were
obtained for each of the seven provenance groups for which we have
adequate samples., Three of these models are summarized in Table 1 to
illustrate the type of results obtained. Statistics for all seven
provenance group models for zinc are given in Table 2 to illustrate the
statigtical quality of the background models.

All samples coded in one of the seven provenance groups for which we
could calculate background models were treated by each of the background
equations separately. The calculated zinc background according to a
given model was then compared with expectations for that model so that
for each background model a sample received a ranking from 0 to 3
inclusive (compare Figure 2). In our case each sample was ranked seven
times, once for each model. These rankings were accumulated into a
single ranking code. Samples recognized as anomalous or potentially
anomalous were divided into three contamination classes with priority
decreasing as certainty of contamination increases. For each
contamination category samples are ranked according to decreasing numeric
value of the ranking code. BAn example is shown in Table 3, where a small
part of the O-contamination category is listed.
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GRANITE

Log (Zn) =

QUARTZITE
log (Zn) =

SCHIST

log (2Zn) =

TABLE 1. EXAMPLES OF

0.4726 + 0.0713 log (Cu) + 0.2420 log (Pb) + 0.0529 log (Ni)
+ 0.3994 log (Mn) + 0.4189 log (Fe) - 0.2334 log (Co)

R = 0,62
= (.1277
n = 393

1,1020 + 0.2721 log (Pb) + 0.1316 log (Ni) + 0.4891 log (Fe)
+ 0.1412 log (Mo) + 0.0399 log (Hg)

= 0,74
= (0.0915
n = 287

0.8392 + 0.4100 log (Pb) + 0.2244 log (Ni) -+ 0.5603 log (Fe)
+ 0.2412 log (W)

= 0,76
= $.1008
n = 27

MULTIVARIATE REGRESSION BACKGROUND MODELS FOR ZINC

MAP-AREA 82F

PROVENANCE GROUP
GRNT QRTZ | SLTE ANDS ARGL GNSS SCST
n 393 287 100 57 56 53 27
R .79 .86 .84 .84 .92 .85 .87
R .62 .74 .70 .70 .85 71 .76
s, | .1277 0015 | .1184 .1031 .0812 .0940 .1008
TABLE 2. SUMMARY STATISTICS FOR MULTIVARIATE BACKGROUND ZINC MODELS

SEVEN

PROVENANCE GROUPS
MAP-AREA 82F
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TABLE 3.
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o #
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777314
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PART OF A TABLE LISTING ANOMALOUS SAMPLES IN ORDER OF DECREASED RANKiNG CODE*

From a total of 1 259 samples, this procedure produced 115 anomalous

samples in the 0O-contamination category.

Our procedure is to list these

samples in tabular form in Table 3 and to produce computer-drawn plots of
anomalous sample locations as illustrated on Figure 3.

In addition to ranking information, original raw data,
the output table contains a simple consecutive numeric identifier used
for clarity on the map output and permitting easy combined use of the

The output map is of particular use
because it identifies the most obvious anomalous samples (for example,

70006) from those that might escape detection {(for example,
scale of the location plot should be identical to geclogical base maps of

tabulated data and the ocutput map.

the area so the two can be studied together without ambiguity.

and coordinates,

0520). The

We tested

sensitivity of the regression procedure for determining a multivariate
background for zinc by establishing such models based on two training

182



¢6100
6100, (44)
(49) .0 403
(61)
00106
0403 (83)
®(67)
7000
(%?) 7000
€7000 ®(3¢) , '%gg?
(33) 117°00° W 0403
g5 *
49°30" N
0601
®(63)
0601
® (60)
0106
®(86)
0502
(64) 4300
e(51)
0106 7000
(84) 7000  ®(2g)
(30) [ o ——— s—
7000 7000 0 S 10
a7) .7(330 7(%%{)). 7(32()) * @ Kilometres
® & .,7000 _7000
7000 b ]
7((23??. (19) 7&50 (18) " (15)

Flgure 3. Plot of an area of anomalous samples redrafted from computer output,

sets: (1) all samples indicated as having background zinc values, and (2}
the same data set minus any samples that appeared to be anomalous in any
element other than zinc. Tables 1 and 2 are based entirely on the second
training set. Figures 4 and 5 illustrate the contrasting results
obtained in background definition. It is clear that the 'cleaner' data
set (number 2 previously) leads to a better multiple regression
relationship, that is, with less scatter of calculated and cbserved
values. The problem with using the second training set is that more work
is regquired to set it up and more samples will be included in the
anomalous category.
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Figure 4. Observed versus calculated zinc values for provenance
group, "ARGL,' map-area B2F, calculated values based on
a model| determlined from all samples with background zinc
values,

JISCUSSION

The methodology described here would appear to have a wide range of
applications to geochemical data evaluation, perhaps with minor
modifications to suit particular data sets. For example, many
geochemical surveys may not record the likelihood that a sample is
contaminated, and this level of ranking might have to be omitted. The
precise limits to the coding regions illustrated on Figure 2 can be
changed to suit a particular bias to anomaly selection, resulting in a
slightly different listing of anomalous samples.

One of the serious problems is the question of initial grouping of data
on the basis of dominant rock type that underlies the drainage basin of
each sample, a classification which is fundamental to our procedure. A
substantial amount of effort is required to code this rock-type
information even if the data are available. If rock type has not been
coded it may be necessary to use some less satisfactory method of
grouping data, such as the use of factor analysis to provide an
approximation of background geology for each sample. In some
environments, of course, scme other parameter may be more useful than
rock type for grouping data.
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Flgure 5. Observed versus calculated zInc values for provenance group, 'ARGL,'! map-area
82F; calcuiatad values based on a model detarmined from those sanplfes with zine
background values that also are not anomalous In any other element (that Is, a
fcieanar! subset of the data used for Figure 4),

CONCLUSIONS

A method of anomaly selection and ranking for multi-element regional
stream sediment data has been described. The procedure offers the
following advantages:

(1) The method is rigorous in making use of established statistical
methods for treating geochemical data such as a probability graph
analysis and backward stepwise regression.

{2) The procedure is computer based and is rapid and thoroucgh.

{3) The methodology ensures that some anomalous values which are not

obvious (that is, are not higher than a simple threshold) will be
recognized.
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(4) A novel ranking procedure is described that assigns relative
priorities to samples for further investigation. Details of the
ranking procedure are subjective but a system of ranking codes
clearly describes the manner in which a sample is anomalous.

(5} Because samples are tested against every rock type, the procedure
incorporates an evaluation as to whether other rock types might be
contributing to the provenance area of a particular sample.
Possible additional rock types are identified and can be compared
with available geological maps.
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