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(Pennask batholith) and Woodjam-Southeast zone 
(Takomkane batholith ) to be essentially synchronous. We 
assert that the Takomkane/Wildhorse magmatic belt is not 
an exploration dud, but rather is highly prospective along 
its length – currently known to extend 375 km. 

This report aims to briefly outline the geological 
setting, age, mineralization and alteration within the 
Takomkane/Wildhorse magmatic belt as displayed at two 
deposits, the past producing Brenda mine, and the actively 
developing Woodjam prospect. 

LOCATION & GEOLOGICAL SETTING 
The Brenda mine and the Woodjam property are 

located within the Quesnel terrane (Figure 1), a stack of 
Paleozoic and Mesozoic arcs that nucleated on a crustal 
ribbon that lay adjacent to ancestral North America 
(ANA). Subduction of ancient Pacific Ocean crust to form 
the proto-Quesnel and conjoined Stikine arcs is believed 
to have begun in the Devonian (e.g. Logan et al., 2000; 
Beatty et al., 2006). Arc growth continued sporadically 
with a significant pulse in the Late Triassic–Early Jurassic 
(212-192 Ma). Na-and K-rich volcanic arc magmatism 
evolved during this 20 Ma epoch with the emplacement 
into the arc of three main Cordilleran-wide plutonic 
suites: the Late Triassic Guichon batholith (212-208 Ma), 
Latest Triassic Copper Mountain (206-200 Ma) and Early 
Jurassic Takomkane/Wildhorse (197-193 Ma) suites 
(Woodsworth et al. 1991; Logan and Mihalynuk , in 
review) and their associated porphyry mineralizing 
events. In southern British Columbia these respective 
mineralizing events produced Highland Valley and 
Gibraltar; Copper Mountain, Afton and Mountain Polley; 
and Brenda and Woodjam. Normal arc subduction 
beneath the composite Quesnel terrane ceased following 
its accretion to ANA in Early Jurassic time (~186 Ma, 
Nixon et al., 1993; herein we use the Jurassic time scale 
of Palfy et al., 2000). 

Brenda mine (MINFILE 092HNE047) 

The Brenda copper-molybdenum deposit is hosted 
within the "Brenda stock", an informal subdivision of the 
much larger, polyphase granodiorite and quartz diorite of 
the Early Jurassic Pennask batholith. It is located about 22 
km west of Peachland. Carr (1967) mapped five, 
northerly-trending textural phases of quartz diorite, in the 
vicinity of the Brenda mine distinguished by slight 
variations in grain size and modal mineralogy. 
Progressing eastward from the hornfelsed contact with 
Nicola Group volcaniclastic rocks, the five phases are: 

1) medium quartz diorite, 
2) speckled quartz diorite, 
3) uniform quartz diorite, 
4) porphyritic quartz diorite, and 
5) fine quartz diorite (Figure 2). 

Typical mineral contents average: quartz (25%), 
plagioclase (50%), potassium feldspar (5-20%), 
hornblende (5-7%) and biotite (5-7%). Later work by 
Soregaroli and Whitford (1976) simplified the geology to 
only two units. Unit 1, is a marginal phase with more 
abundant mafic minerals (hornblende>biotite) and angular 
quartz grains, that embraces most of Carr’s phases 1, 2, 
and 3. Unit 2 is characterised by fewer mafic minerals 
(biotite>hornblende), euhedral biotite phenocrysts and 
subhedral quartz grains, that include Carr’s phases 4 and 5 
(Figure 2). The contact between the two units is described 
as typically diffuse, but where sharp, Unit 2 is chilled 
against Unit 1(Soregaroli and Whitford, 1976). Several 
ages and compositions of pre and post-ore dikes cut the 
stock. The deposit is approximately 390 m from the 
contact with Nicola Group rocks to the west (Figure 2). 

Mineralization is confined almost entirely to veins 
which cut relatively unaltered quartz diorite. Vein walls 
can be sharp and/or diffuse where gangue and sulphides 
have variably infiltrated and replaced the wall rock. Vein 
density within the Brenda Mines orebody is not uniform. 
It ranges from less than 9 veins per metre near the 
periphery of the orebody to 63 per metre and locally 90 
per metre near the centre (Oriel, 1972). Potassic alteration 
forms narrow potash feldspar or biotite alteration 
envelopes related to sulphide mineralization, where as 
propylitic alteration predates and accompanies some of 
the late-stage veining events. Soregaroli (1968) and Oriel 
(1972) studied the mineralogy, geometry and crosscutting 
relationships of veins at Brenda and developed the 
following paragenesis: 

Stage 1. Biotite-chalcopyrite 
Stage 2. Quartz-potassium feldspar-sulphide. These 
veins form the bulk of the mineralization. They are 
composed of quartz and potassium feldspar, with 
variable quantities of chalcopyrite, molybdenite and 
pyrite (Figure 3). 
Stage 3. Quartz-molybdenite-pyrite 
Stage 4. Epidote-sulphide-magnetite 
Stage 5. Biotite; calcite; quartz. 
Production at the mine began in early 1970 and 

officially ceased June 08, 1990 after milling 181.7 Mt of 
ore grading 0.22% Cu and 0.064% Mo (mill head grades; 
Weeks et al., 1995). Production totalled 0.27 Mt of 
copper, 0.068 Mt Mo and 2.28 t Au (MINFILE). 

Woodjam (MINFILE 093A 078) 

The Woodjam property is located 35 km southeast of 
the Mount Polley copper-gold mine. It is underlain by 
hornfelsed Late Triassic Nicola Group volcanic and 
related sedimentary rocks within the contact metamorphic 
aureole of the Late Triassic to Early Jurassic Takomkane 
batholith (~202-193 Ma); a composite, quartz-saturated 
calcalkaline intrusion composed of hornblende 
monzodiorite to hornblende-biotite monzogranite (Figure 
4). Intrusive rocks dominate the eastern portion of the
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Figure 3. Stage 2 quartz-potassium feldspar-sulphide vein cutting 
hornblende±biotite granodiorite of the Brenda stock - Pennask 
batholith. Note diffuse vein boundary with chalcopyrite (Cpy) 
>>pyrite replacement peripheral to vein as well as chalcopyrite 
and molybdenite (Mo) interstitial to potassium feldspar (Ksp) and 
quartz (Qtz) vein gangue. 

property. To the west, Miocene to Pleistocene alkali 
olivine flood basalts of the Chilcotin Group overlie Nicola 
Group volcanic rocks (Wetherup, 2000; Schiarizza et al., 
2009a). Cu-Mo±Au mineralization is hosted within the 
intrusion (Southeast zone) and Cu-Au±Mo mineralized 
quartz stockwork and breccias (Megabuck, Deerhorn, 
Spellbound and Takom zones) are hosted in the volcanic 
and volcaniclastic country rock up to 1.5 km west of the 
north-trending contact with the batholith (Logan et al., 
2007). 

Mineralization at Megabuck crosscuts upper 
volcaniclastic units of the Nicola Group and consists of an 
early quartz-magnetite-chalcopyrite±gold stockwork 
system overprinted by carbonate±chalcopyrite-pyrite 
veinlets. A pyritic halo surrounds the mineralized 
stockwork. Analogy with the alkalic porphyry 
mineralization at Mount Polley mine has been suggested, 
but the alkaline Cu-Au porphyries are typically quartz 
undersaturated. In addition, the alkalic porphyries are not 
characterized by quartz stockwork, and they are Late 
Triassic in age (Logan and Bath, 2006). 

The Southeast zone is a blind deposit that was 
discovered in 2007 by drilling a well-defined (>1500 m 
wide), overburden-covered IP chargeability anomaly. 
Three widely spaced vertical diamond-drill holes 

completed during the 2007 program were mineralized 
from top to bottom (each hole reaching ~300 m depth). 
The best grades came from hole WJ-07-79, which 
intersected 203.55 m grading 0.34% Cu and 0.014% Mo 
(Fjordland Exploration Inc., 2008). Follow-up drilling to 
date totals 18 holes and indicates that the pyrite, 
chalcopyrite and molybdenite mineralization is vertically 
zoned from copper-gold mineralization (1.01% Cu, 0.44 
g/t Au over 200.8 m) to copper- molybdenum (0.24% Cu, 
0.014% Mo over 60.0 m) mineralization with increasing 
depth (Peters, 2009; Fjordland website). Mineralization in 
the Southeast zone consists of pyrite, chalcopyrite, 
molybdenite and trace bornite, which occur along 
fractures, in quartz veinlets and as disseminations (Figure 
5). It is hosted entirely in quartz monzonite and 
granodiorite of the Takomkane batholith. 

PREVIOUS AGE DATING 
Isotopic age determinations for mineralized rock 

assemblages sampled in the vicinity of the Brenda deposit 
have been reported by various authors (Figures 2, 6). 
Parrish and Monger (1992) reported U/Pb dates for 
zircons and titanite separates. White et al. (1968) and 
Oriel (1972) report a number of K-Ar dates from whole 
rock, hornblende and biotite samples. A sample collected 
13 km north of the Brenda pit returned an Early Jurassic 
U-Pb crystallization age from zircon, and a sample 
collected 13 km southwest of the pit yielded cooling ages 
between 150 and 140 Ma for titanite (Parrish and Monger, 
1992). The titanite corroborates similar age brackets for 
K/Ar, biotite cooling ages at Brenda mine. The historical 
K/Ar data from biotite and hornblende separates for the 
Brenda mine suggested a ~176 Ma age for primary (?) 
hornblende and a ~146 Ma age for secondary, 
hydrothermal (?) biotite, with an interpretation that the 
pluton that hosts the deposit is older and not the causative 
phase assuming that the secondary biotite is dating the 
mineralizing event (Soregaroli and Whitford, 1976). To 
test this hypothesis we collected three samples from the 
vicinity of Brenda pit; one for U-Pb analyses, one for Ar-
Ar and a mineralized vein sample for Re-Os age 
modelling. 

Age dating in the vicinity of the Woodjam Property 
includes U-Pb, zircon constraints on the crystallization 
age of a number of phases of the Takomkane batholith 
and cooling ages established by Ar-Ar step heating of 
hornblende and feldspar mineral separates (Logan et al., 
2007; Schiarizza et al., 2009a&b). Schiarizza (personal 
communication) has provided unpublished zircon ages of 
196.84 ±0.22 Ma for the Woodjam Creek phase of the 
Takomkane batholith and a rough age estimate of ca. 204 
Ma for an unnamed coarse plagioclase porphyry stock; 
both are shown on Figure 4. In addition a drill core 
sample (WJ04-37) of quartz-feldspar-biotite porphyry 
dike that cuts mineralization in the Megabuck Cu-Au 
zone returned an undisturbed biotite cooling age of 
163.67 ±0.83 Ma, providing an upper age limit for the 
Cu-Au±Mo mineralization (Logan et al., 2007).  
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for Re-Os dating was collected from the northeast corner 
of the Brenda pit (Zone 10, UTM 715279E, 5529449N) 
from a 35 cm wide, steeply dipping northeast trending 
bullish quartz vein mineralized with chalcopyrite, 
disseminated pyrite and fracture-filling molybdenite 
(Figure 7). The mineralogy, orientation and its’ 
crosscutting relationship with pegmatitic feldspar-quartz 
veins suggest that the molybdenite sampled comes from a 
Stage 3 vein (Soregaroli and Whitford, 1976).  

Woodjam - Southeast zone  

Hornblende±biotite quartz monzonite  
A well-mineralized interval of Takomkane batholith 

quartz monzonite containing molybdenum was sampled 
from an 8 cm long sample of split drillcore (provided by 
B. Laird, of Mincord Exploration Consultants Ltd.) from 
317 m below the collar of diamond-drill hole WJ07-79 
(Zn 10, 613104E, 5788240N). Molybdenite and 
chalcopyrite occupy millimetre-wide quartz veins and 
fractures cutting weak potassium-altered and silicified 
medium-grained hornblende quartz monzonite. 
Molybdenite was separated from the quartz monzonite 
and analysed to obtain a model age for mineralization. 

U-PB AND 40AR/39AR 
GEOCHRONOLOGY METHODS 

Sample preparation and analytical work for both the 
U-Pb and the 40Ar/39Ar isotopic ages presented herein was 
conducted at the Pacific Centre for Isotopic and 
Geochemical Research (PCIGR) at the Department of 
Earth and Ocean Sciences, The University of British 
Columbia.  

Zircon was separated from the “Brenda stock” 
sample JLO07-32-225 using standard mineral separation 
techniques (crushing, grinding, Wilfley (wet shaker) 
table, heavy liquids and magnetic separation), followed 
by hand picking. Details of the separation techniques can 
be found in Logan et al. (2007). Air abraded single zircon 
grains were analysed with results listed in Table 1 and 
plotted in Figure 8a. U-Pb isotopic age determinations 
were obtained by Thermal Ionization Mass Spectroscopy 
(U-Pb ID-TIMS). Details of the both the mineral 
separation and analytical techniques are presented in 
(Logan et al., 2007). 

40Ar/39Ar isotopic age determinations were obtained 
by the laser-induced step-heating technique. Details of the 
analytical techniques are presented in (Logan et al., 
2007). Hornblende and biotite were separated from a 
granodiorite phase of the Brenda stock and analysed 
separately to constrain its cooling history.  

U-Pb geochronology results 
U-Pb analyses of five zircon grains separated from 

the Brenda granodiorite were determined by thermal 
ionization mass spectrometry (TIMS) technique.  

 
Figure 7. Stage 3 quartz vein mineralized with disseminated 
pyrite (Py), coarse blebby chalcopyrite (Cpy) and fracture-filling 
molybdenite (Mo). Re/Os sample JLO07-226. 

 
Figure 8a. Concordia plot for U/Pb TIMS data for sample JLO07-
32-226. 2 σ error ellipses for individual analytical fractions are red. 
Minimum age 194.7 ±0.3 Ma based on 206Pb/238U date of oldest 
grain. Concordia bands include 2 σ errors on U decay constants. 

Analysed mineral fractions and results are presented in 
Table 1, and the data are illustrated in Figure 8a. 

Of the five grains dated, four overlap Concordia at 
the 2 σ confidence level between about 192-195 Ma and 
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Table1. U-Pb Thermal Ionization Mass Spectrometry analytical data for zircon from hornblende, biotite quartz diorite of the 
Brenda stock, sample JLO07-32-225. 
 

 
 
one is normally discordant, lying slightly off Concordia at 
about 184 Ma. This data array is likely the result of Pb 
loss from at least four of the five analysed grains (Figure 
8a, Table 1). The 206Pb/238U date for the oldest grain, at 
194.7 Ma, is taken as a minimum age of crystallization for 
the rock, which assumes that none of the analysed grains 
contain older inherited zircon. 

40Ar/39Ar cooling age 
Hornblende separated from the Brenda stock yields a 

complicated argon release spectra with older apparent 
ages in the low-temperature steps (1-5) indicating 
probable excess argon. The five-step plateau age of 160.7 
±0.9 Ma is calculated from the final 40.8% of the total 
39Ar (Figure 8b). Gas measurements obtained during each 
of the heating steps are presented in Table 2.  

Biotite from the same sample Brenda stock 
granodiorite gave a well-defined plateau age of 158.22 
±0.82 Ma, represented by 83.7% of the total 39Ar released 
(Figure 8c). Gas measurements obtained during each of 
the heating steps are presented in Table 3. The inverse 
isochron results in 11 points which define a poor quality 
isochron with an age of 158.7 ±1.1 Ma, an initial 
40Ar/36Ar of 211 ±160 Ma, and a MSWD of 1.07.  

RE-OS GEOCHRONOLOGY METHODS 
Molybdenite was separated from the rock samples by 

metal-free crushing and milling, and concentrated using 
gravity and magnetic methods following Selby and 
Creaser (2004). The Re content was established for each 
molybdenite separate, to determine optimal spiking for 
the subsequent measurement of Re and Os by isotope 
dilution using a mixed double spike solution containing 
isotopically enriched 185Re and isotopically enriched 188Os 
and 190Os.  

 

 
Figure 8b. Step-heating gas release plot for 40Ar/39Ar analyses for 
hornblende sample JLO07-32-225-2 hornblende.  

 
Figure 8c. Step-heating gas release plot for 40Ar/39Ar analyses for 
biotite sample JLO07-32-225-2. 

Wt. U Th Pb 206Pb* mol % Pb* Pbc
206Pb 208Pb 207Pb 207Pb 206Pb corr. 207Pb 207Pb 206Pb

Sample mg ppm U ppm x10-13 mol 206Pb* Pbc
(pg) 204Pb 206Pb 206Pb % err 235U % err 238U % err coef. 206Pb ± 235U ± 238U ± % disc

(a) (b) (c) (d) (c) (e) (e) (e) (e) (f) (g) (g) (h) (g) (h) (g) (h) (i) (h) (i) (h) (i) (h)
JLO-07-32-225
A 0.013 202 0.351 6.2 3.3605 99.55% 65 1.24 4142 0.112 0.050188 0.590 0.210449 0.690 0.030412 0.264 0.545 203.69 13.68 193.93 1.22 193.13 0.50 5.19
B 0.009 251 0.376 7.8 2.9461 99.58% 70 1.01 4452 0.120 0.049979 0.239 0.208895 0.367 0.030314 0.229 0.773 194.00 5.56 192.62 0.64 192.51 0.43 0.77
C 0.008 368 0.375 10.9 3.3267 99.56% 67 1.21 4212 0.120 0.050012 0.239 0.199138 0.372 0.028879 0.240 0.778 195.53 5.56 184.40 0.63 183.53 0.43 6.14
D 0.007 448 0.376 13.8 3.6796 99.76% 122 0.73 7699 0.120 0.049945 0.553 0.208626 0.683 0.030295 0.328 0.598 192.42 12.87 192.40 1.20 192.40 0.62 0.01
E 0.006 113 0.357 3.6 0.9137 99.28% 40 0.54 2586 0.113 0.049906 0.340 0.210936 0.422 0.030655 0.169 0.637 190.60 7.92 194.34 0.75 194.65 0.32 -2.12
(a) A, B etc. are labels for abraded single zircon grains.
(b) Fraction masses determined on Sartorious SE2 ultramicrobalance to +/- 1 microgram.
(c) Nominal U and total Pb concentrations subject to uncertainty in fraction masses.
(d) Model Th/U ratio calculated from radiogenic 208Pb/206Pb ratio and 207Pb/235U age.
(e) Pb* and Pbc represent radiogenic and common Pb, respectively; mol % 206Pb* with respect to radiogenic, blank and initial common Pb.
(f) Measured ratio corrected for spike and fractionation only. Mass discrimination of 0.23% +/- 0.05%/amu +/- 1s, absolute, based on analysis of NBS-982; all Daly analyses.
(g) Corrected for fractionation, spike, and common Pb; up to 1 pg of common Pb was assumed to be procedural blank: 206Pb/204Pb = 18.50 ± 1.0%; 207Pb/204Pb = 15.50 ± 1.0%;
     208Pb/204Pb = 38.40 ± 1.0% (all uncertainties 1-sigma).  Excess over blank was assigned to initial common Pb with Stacey and Kramers (1975) model Pb composition at 195 Ma.
(h) Errors are 2-sigma, propagated using the algorithms of Schmitz and Schoene (2007) and Crowley et al. (2007).
(i) Isotopic dates are calculated using the decay constants l238=1.55125E-10 and l235=9.8485E-10 (Jaffey et al., 1971). 206Pb/238U and 207Pb/206Pb ages corrected for initial disequilibrium in 230Th/238U
      using Th/U [magma] = 3.
(j) Corrected for fractionation, spike, and blank Pb only.
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Table 2. 40Ar/39Ar step heating gas release data from sample JLO07-32-225-2 hornblende. 

 

 
 
 
 
Table 3. 40Ar/39Ar step heating gas release data from sample JLO07-32-225-2 biotite. 

 

 
 
 
 
 
 
 

07JLO32-225-2 Hornblende
Laser Isotope Ratios
Power(%) 40Ar/39Ar 38Ar/39Ar 37Ar/39Ar 36Ar/39Ar Ca/K Cl/K %40Ar atm f 39Ar 40Ar*/39ArK Age
2 195.8500±0.0417 0.4150±0.0670 -0.1166±18.0450 0.5249±0.0583 0 0.073 79.32 0.08 38.143±7.094 327.07±55.63
2.3 42.6956 0.0149 0.0992 0.0827 0.1174 1.5399 0.0994 0.0257 0.461 0.016 68.72 1.25 13.071 0.662 118.88  5.83
2.6 20.6180 0.0096 0.0360 0.1174 0.0945 0.9724 0.0218 0.0404 0.371 0.004 30.16 2.34 14.070 0.291 127.65  2.55
2.9 19.5351 0.0060 0.0374 0.0371 0.2265 0.2086 0.0095 0.0440 0.888 0.005 13.6 5.6 16.689 0.160 150.44  1.39
3.2 19.1815 0.0054 0.0962 0.0197 0.7585 0.0195 0.0041 0.0559 2.974 0.019 5.27 10.34 18.055 0.121 162.22  1.04
3.5 19.3676 0.0067 0.1537 0.0176 1.1309 0.0233 0.0037 0.0396 4.436 0.032 4.41 15.4 18.438 0.134 165.50  1.15
3.8 19.4876 0.0067 0.1589 0.0159 1.7967 0.0159 0.0038 0.0217 7.055 0.033 4.01 24.23 18.670 0.130 167.50  1.12
4.1 18.3525 0.0046 0.0745 0.0187 0.5371 0.0386 0.0018 0.0499 2.105 0.014 2.03 13.31 17.876 0.088 160.68  0.75
4.3 18.1525 0.0042 0.0709 0.0260 0.5589 0.0422 0.0012 0.0934 2.191 0.013 1.05 11.66 17.848 0.084 160.44  0.72
4.5 18.2846 0.0076 0.0573 0.0786 0.4295 0.1939 0.0015 0.2607 1.684 0.01 1.16 5.15 17.851 0.179 160.47  1.54
4.8 18.3992 0.0058 0.0636 0.0563 0.5870 0.0847 0.0018 0.1195 2.301 0.011 1.37 4.46 17.902 0.124 160.91  1.07
5.4 18.3739 0.0053 0.0691 0.0469 0.6906 0.0970 0.0017 0.0886 2.708 0.013 1.42 6.19 17.930 0.107 161.15  0.92

Total/Average 19.2832±0.0011 0.1050±0.0042 1.9943±0.0031 0.0050±0.0067 3.655 0.02 100 17.974±0.025
J-error = 0.005211±0.000008
Volume 39ArK = 385.12
Integrated Date = 161.53±0.49
Volumes are 1x10-13 cm3 NPT
Neutron flux monitors: 28.02 Ma FCs (Renne et al., 1998)
Isotope production ratios: (40Ar/39Ar)K=0.0302±0.00006, (37Ar/39Ar)Ca=1416.4±0.5, (36Ar/39Ar)Ca=0.3952±0.0004, Ca/K=1.83±0.01(37ArCa/39ArK).

07JLO32-225-2 Biotite
Laser Isotope Ratios
Power(%) 40Ar/39Ar 38Ar/39Ar 37Ar/39Ar 36Ar/39Ar Ca/K Cl/K %40Ar atm f 39Ar 40Ar*/39ArK Age
2 123.5134±0.0287 0.1456±0.1915 0.2985±0.0827 0.3857±0.0491 1.168 0.016 93.21 0.04 7.862±4.704 72.34±42.42
2.3 31.9991 0.0076 0.0549 0.1191 0.1600 0.0343 0.0745 0.0372 0.621 0.006 68.65 0.46 9.776 0.811 89.52  7.25
2.6 19.1244 0.0045 0.0334 0.0473 0.0606 0.0411 0.0182 0.0427 0.235 0.004 27.4 1.21 13.648 0.240 123.79  2.10
2.9 19.4652 0.0043 0.0322 0.0154 0.0258 0.0282 0.0072 0.0286 0.1 0.004 10.77 6.75 17.280 0.098 155.35  0.85
3.1 18.6313 0.0044 0.0320 0.0250 0.0179 0.0572 0.0038 0.0209 0.069 0.004 5.85 7.8 17.456 0.082 156.86  0.70
3.3 17.9873 0.0044 0.0307 0.0211 0.0200 0.0375 0.0011 0.0619 0.078 0.004 1.67 8.35 17.602 0.081 158.12  0.70
3.5 17.8601 0.0043 0.0314 0.0353 0.0194 0.0238 0.0007 0.0881 0.075 0.004 0.97 8.5 17.602 0.080 158.12  0.69
3.7 17.8887 0.0051 0.0312 0.0381 0.0278 0.0272 0.0007 0.0609 0.108 0.004 0.9 9.56 17.648 0.093 158.51  0.80
3.8 17.9001 0.0045 0.0314 0.0240 0.0218 0.0351 0.0006 0.1005 0.084 0.004 0.78 6.98 17.669 0.083 158.69  0.71
4 17.8708 0.0049 0.0340 0.0403 0.0580 0.0244 0.0007 0.0854 0.223 0.005 0.88 7.36 17.625 0.089 158.32  0.77
4.2 17.8661 0.0044 0.0313 0.0206 0.0367 0.0297 0.0006 0.0865 0.141 0.004 0.77 7.79 17.642 0.081 158.47  0.69
4.4 17.9249 0.0048 0.0318 0.0451 0.0406 0.0221 0.0007 0.1042 0.156 0.004 0.96 7.27 17.663 0.089 158.64  0.77
4.6 17.8118 0.0045 0.0315 0.0207 0.0448 0.0265 0.0006 0.0916 0.172 0.004 0.81 7.99 17.582 0.082 157.95  0.71
4.8 17.9181 0.0046 0.0322 0.0244 0.0488 0.0290 0.0008 0.0685 0.187 0.004 1.06 6.5 17.634 0.085 158.40  0.73
5 17.8185 0.0046 0.0317 0.0181 0.0783 0.0235 0.0008 0.0954 0.301 0.004 1.05 6.54 17.538 0.086 157.57  0.74
5.3 17.8425 0.0047 0.0318 0.0274 0.1172 0.0152 0.0009 0.0434 0.45 0.004 1.13 6.88 17.552 0.085 157.69  0.73

Total/Average 18.1053±0.0006 0.0320±0.0041 0.0890±0.0018 0.0020±0.0068 0.163 0.005 100 17.491±0.014
J-error = 0.005204±0.000008
Volume 39ArK = 1149.1
Integrated Date = 157.17±0.34
Volumes are 1x10-13 cm3 NPT
Neutron flux monitors: 28.02 Ma FCs (Renne et al., 1998)
Isotope production ratios: (40Ar/39Ar)K=0.0302±0.00006, (37Ar/39Ar)Ca=1416.4±0.5, (36Ar/39Ar)Ca=0.3952±0.0004, Ca/K=1.83±0.01(37ArCa/39ArK).
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The Carius-tube method was used in this study for 
the dissolution of molybdenite and equilibration of 
sample and tracer Re and Os. Molybdenite samples were 
dissolved and equilibrated with a known amount of tracer 
in reverse aqua regia (2:1 16 N HNO3 and 12N HCl, 3 ml) 
at 240°C for 24 h then cooled and refrigerated prior to Os 
and Re separation. Extraction of OsO4 from the acid-
sample mix was achieved using modified solvent 
extraction and microdistillation techniques. Mo was 
removed by solvent extraction from the acid-sample 
mixture after Os separation. Rhenium was then purified 
by HNO3 + HCl-based anion exchange chromatography 
using standard techniques. Total procedural blanks for Re 
and Os are less than 2 picograms and 0.5 picograms, 
respectively. These procedural blanks are insignificant in 
comparison to the Re and Os concentrations in the 
molybdenite analysed here. The purified Re and Os was 
analysed by Negative Thermal Ion Mass Spectrometry 
(N-TIMS), and abundances of 187Re and 187Os calculated. 

Typically, 20 mg of molybdenite was used for the 
full Re-Os analysis, and all data are presented in Table 4. 
An overview of the Re-Os method of dating molybdenite 
can be found in Stein et al. (2001). 

Model ages are calculated from the simplified isotope 
equation: t = ln(187Os/187Re + 1)/λ, where λ is the 187Re 
decay constant (1.666 ±0.005 x 10-11 a-1; Smoliar et al., 
1996), which contains a ±0.31% uncertainty in the value 
of λ (Selby et al., 2007) and assumes that molybdenite 
crystallizes with only Re and no Os. The 2σ age 
uncertainty quoted above (Table 4) reflects all known 
sources of analytical error, fully propagated to arrive at 
the quoted age uncertainty. 

Re-Os Geochronology Results 
The Re-Os model ages for molybdenite from the 

Brenda mine and Southeast zone of the Woodjam South 
property are early Jurassic, 193.9 ±0.9 Ma and 196.9 ±0.9 
Ma respectively (Table 4). These are considered good 
quality data that accurately reflect the age of molybdenite 
crystallization. 

DISCUSSION OF AGE 
DETERMINATIONS 

Typical porphyry systems are characterized by 
multiple intrusive and hydrothermal phases that overprint 

and reset metal and alteration zonations and isotopic-
signatures (Gustafson and Hunt, 1975). So too has 
copper-molybdenum mineralization at the Brenda deposit 
formed during multiple stages, as evidenced by 
crosscutting mineralized vein assemblages. To unravel the 
relationships between the magmatic (i.e. crystallization 
age) and mineralization and later cooling history of the 
Brenda stock; we utilized three different techniques: U-Pb 
zircon for magmatic crystallization, Re-Os isotope system 
for hydrothermal mineralization, and 40Ar/39Ar dating of 
two mineral systems for the age and rate of cooling. 
Zircon closure temperatures are generally taken to be > 
900oC in a magmatic environment (Mezger, 1990).The 
Re-Os geochronometer is remarkably resilient to both 
hydrothermal metamorphism (Selby and Creaser, 2001) 
and granulite-facies metamorphism (Bingen and Stein, 
2002 ) and should reliably date crystallization of 
molybdenite, not later disturbance events. Hornblende and 
biotite have Ar retention closure temperatures of 570-
465oC and 360-280oC (Reiners and Brandon, 2006) 
respectively. The 40Ar/39Ar dating techniques is more 
robust than the K-Ar biotite technique used in the past and 
provides more information about the rate of cooling.  

Brenda 
Historical potassium-argon dates of samples from the 

Brenda mine area produced a mean age (n=4) for 
hornblende of 178.5 ±15.5 Ma and a mean age of 148 
±9.2 Ma (n=5) for apparent co-existing biotite (Figure 6). 
Interpretation of these results suggested that the Brenda 
stock crystallized about ca. 178 Ma and the148 Ma biotite 
date from the pit area was interpreted to be the age of 
mineralization (White et al., 1968). In addition, it was 
postulated that the Cu and Mo could have been emplaced 
at different times due in part to their independent 
concentration within separate structural trends. Copper is 
distributed along northeast-trends and the molybdenite on 
northwest-trending structures. To test this scenario the 
molybedenite mineralization dated was collected from 
one of the younger vein sets (Stage 3 vein). However, it 
has an Early Jurassic Re-Os model age identical, within 
error, to the crystallization age of the batholith.  

Our 40Ar/39Ar results for hornblende indicate 
excessive radiogenic argon and a plateau age defined by 
only 40% of 39Ar and a biotite cooling age that is 
identical, within error, to the hornblende data ca 159 Ma. 
This age is intermediate to the historic K/Ar clusters for 

 
 
Table 4. Re/Os isotopic results and age determinations of molybdenite for samples JLO07-226 and WJ-07-79.  
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hornblende and biotite (Figure 6) and has no clear cause 
inherent to the Brenda stock. However, a ~167 Ma titanite 
cooling age (Parrish and Monger, 1992; Figure 6) is 
reported for a sample of the Pennask batholith collected 
~2 km north of its southern contact with the Osprey Lake 
batholith (166 ±1 Ma) and less than a kilometre away 
from a suite of north-trending Early Tertiary (62 ±2 Ma) 
potassium feldspar porphyry dikes and plugs (Parrish and 
Monger, 1992). In addition, historic K/Ar, Ar/Ar and 
Rb/Sr dates from around the mine range down to 135 Ma 
(Figure 6; Breitsprecher and Mortensen, 2004) and 
probably reflect partial re-setting of original cooling ages 
by younger magmatic suites in the area including; Middle 
Jurassic (Osprey Lake batholith), mid-Cretaceous 
(Okanagan batholith) and Early Tertiary (Nicola 
batholith) granitic bodies. 

Our U/Pb results for zircon separated from the 
granodiorite hosting mineralization at the mine: ~194.7 
±0.3 Ma is identical, within error, to the 194 ±1Ma 
crystallization age reported for Pennask batholith biotite 
granodiorite by Parrish and Monger (1992). The Re-Os 
model age for molybdenite mineralization is 193.9 ±0.9 
Ma also synchronous within error (Figure 6).  

Woodjam - Southeast zone 
The Re/Os model age for Southeast zone 

molybdenite mineralization at ~196.9 ±0.9 Ma is identical 
to the U/Pb, zircon crystallization ages (196.84 ±0.22 Ma, 
P. Schiarizza, personal communication, 2010) and is 
compatible with the Ar/Ar, biotite and feldspar cooling 
ages (193.0 ±1.2 Ma and 192.2 ±1.1 Ma, Logan et al., 
2007) for the Woodjam Creek phase of the Takomkane 
batholith (Schiarizza et al., 2009b). The ore mineralogy, 
style and age indicate that Southeast zone formed in 
response to Early Jurassic calcalkaline magmatism. It is 
ca. 10 to 15 Ma younger than mineralization at Gibraltar 
(Oliver et al., 2009) and ca. 8 Ma younger than 
mineralization associated with alkaline magmatism at 
Mount Polley. 

If there is any systematic difference in the ages of 
intrusion and mineralization, its measurement is beyond 
the resolution of the geochronometers available to us. 
This contemporaneity of intrusion and hypogene 
mineralization is consistent with the results of similarly 
robust datasets elsewhere within the Cordilleran belt for 
alkalic porphyry deposits (e.g. Iron Mask and Mt. Polley 
(Logan et al., 2007), and results from other porphyry 
systems globally (McInnes et al., 2005). Our new data 
provide a tight integration with the ~195 Ma calcalkaline 
Cu-Mo±Au porphyry event that is exposed along the 
length of Quesnellia and may have implications for 
similar aged Cu-Au-Mo metallogenic systems in Stikinia 
(i.e. Kerr, Sulphurets and Premier (?)) and northern 
Cordillera.  

MESOZOIC QUESNEL 
Spatial and temporal relationships between magmatic 

cycles in arcs and porphyry copper formation has long 
been recognized (Sillitoe, 1972; Clark et al., 1976; 
Sillitoe and Perrelló, 2005) and is well displayed in 
southern Quesnel terrane, where three subparallel, linear, 
Cu-Mo, Cu-Au and Cu-Mo±Au porphyry belts occur 
within the 20 Ma epoch considered here (Figure 9). In 
southern Quesnellia, migration of Late Triassic to Early 
Jurassic magmatism across southern British Columbia is 
indicated by linear belts of temporal plutons reflecting 50 
Ma of arc evolution above an east-dipping subduction 
zone (Mortimer, 1987; Parrish and Monger 1992; Ghosh, 
1995). Quesnel arc magmatism and associated porphyry 
mineralization migrated eastward with time, beginning in 
the west, ca. 210-215 Ma with emplacement of plutons 
and development of calcalkaline Cu-Mo±Au deposits at 
Highland Valley and Gibraltar. New data suggests 
multiple stages of mineralization at Highland Valley; that 
post-dates intrusion of the Guichon batholith by up to 4 
Ma (Ash et al., 2007). In the central axis of the arc are 
slightly younger alkaline intrusions and 205 Ma, Cu-Au 
mineralization at Mount Polley (Logan et al., 2007) and 
Copper Mountain (Mihalynuk et al., 2008), part of the 
chain of similar deposits that extends the length of the 
Intermontane Belt (Barr et al., 1976; Figure 1). 

Early Jurassic calcalkaline magmatism and Cu-
Mo±Au mineralization was initiated following an 
approximate 3-5 Ma hiatus. In southern QN the roots of 
this arc are defined by a 375 km long arcuate belt of 197-
193 Ma granodiorite plutons (Takomkane/Wildhorse 
suite) and in the north by the Hogem batholith. In central 
QN, it is under represented, probably because of the thick 
glacial cover in this region. Late Early Jurassic alkaline 
magmatism and porphyry Cu-Au formation at Mt 
Milligan closely followed emplacement of the Quesnel 
arc onto Ancestral North American (ANA) margin at 
~186 Ma (Nixon et al., 1993). A second pulse of alkaline 
magmatism at ~178 Ma in northern QN at Lorraine 
(Logan and Mihalynuk, in review) and >156 Ma in 
southern QN at Sappho (Nixon and Laflamme, 2002) are 
probable post-subduction partial melts of subduction-
modified arc-lithosphere (Richards, 2009). 

CONCLUSIONS 
Copper-molybdenum±gold mineralization at the 

Brenda deposit formed during several stages, as 
evidenced by mineralogically different and crosscutting 
vein assemblages. Our isotopic age dating results show 
that the time span between magma crystallization and the 
final stages of mineralization is too small to be measured 
by the geochronometers employed. It is most likely less 
than a million years. It formed from the same evolving 
magmatic/mineralizing episode responsible for 
emplacement and crystallization of the Early Jurassic 
Pennask batholith. The same relationship between 
mineralization and magmatism is evident on the
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Woodjam property 280 km to the north, where 
molybdenum from the Southeast zone has a Re-Os model 
age for mineralization that overlaps the Early Jurassic 
crystallization age of the host Takomkane batholith. 

Early Jurassic mineralization at Brenda and 
Woodjam-Southeast is hosted in large, medium to coarse-
grained, equigranular calcalkaline intrusives. In both 
cases Cu-Mo±Au mineralization occurs very close to the 
margins of these upper crustal batholith-sized intrusions. 
These are important exploration criteria that incorporate 
the type of porphyry deposit and degree of uplift and 
erosion affecting these parts of the porphyry belt. In 
contrast, the Late Triassic Cu-Au±Ag alkalic systems are 
small, high level complex intrusions which intrude coeval 
and cogenetic? volcanic rocks. Mineral and alteration 
assemblages are unique to each type of porphyry deposit 
(Sillitoe, 2002; McMillan, 2005). As a result, 
geochemical and geophysical responses dictate different 
techniques to delineate alkaline (eTh/K lows located on 
flanks of magnetic highs; Shives et al., 1997) vs. 
calcalkaline (conductive I.P. geophysical response related 
to sulphide halo) porphyry deposits. It follows then, to 
ensure successful exploration along the Quesnel arc it is 
critical to understand where and in which 
magmatic/metallogenic belt you are and which potential 
targets you should expect. 

It is anticipated from the exploration successes at 
Woodjam property by Fjordland Exploration Inc, Cariboo 
Rose Resources and Gold Fields Horsefly Exploration 
Corp., that the recognition of this Early Jurassic Cu-
Mo±Au porphyry belt will help to focus more exploration 
on this 375 km long prospective belt of calcalkaline 
intrusions in south-central British Columbia. If so, new 
discoveries are certain to be realized. 
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