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1. Introduction
Quantitative Evaluation of Materials by Scanning electron

microscopy (QEMSCAN®) was used to assess carbonatite 
indicator minerals in fl uvial sediments from the drainage area 
of the Aley carbonatite, in north-central British Columbia. 
QEMSCAN® is a viable method for rapid detection and 
characterization of carbonatite indicator minerals with minimal 
processing other than dry sieving. Stream sediments from 
directly above, and up to 11 km downstream, of the carbonatite 
deposit were selected for this indicator mineral study. The 
geology of the Aley carbonatite is described by Mäder (1986), 
Kressal et al. (2010), McLeish (2013), Mackay and Simandl 
(2014), and Chakhmouradian et al. (2015).

Traditional indicator mineral exploration methods use 
the 0.25–2.0 mm size fraction of unconsolidated sediments 
(Averill, 2001, 2014; McCurdy, 2006, 2009; McClenaghan, 
2011, 2014). Indicator minerals are detectable by QEMSCAN® 
at particle sizes smaller than those used for hand picking 
(<0.25 mm). Pre-concentration (typically by shaker table) is 
used before heavy liquid separation, isodynamic magnetic 
separation, optical identifi cation using a binocular microscope, 
and hand picking (McClenaghan, 2011). Following additional 
sieving, the 0.5-1 and 1-2 mm fractions are hand picked for 
indicator minerals while the 0.25-0.5 mm fraction is subjected 
to paramagnetic separation before hand picking (Averill, 2001; 
McClenaghan, 2011). Hand picking indicator minerals focuses 
on monomineralic grains, and composite grains may be lost 
during processing. Composite grains are diffi cult and time 
consuming to hand pick and characterize using optical and 
Scanning Electron Microscopy (SEM) methods. A single grain 
mount can take 6-12 hours to chemically analyse (Layton-
Matthews et al., 2014). 

Detailed sample analysis using the QEMSCAN® Particle 
Mineral Analysis routine allows for 5-6 samples to be analyzed 
per day. When only mineral identifi cation and mineral 
concentrations and counts are required, the use of a Bulk 
Mineral Analysis routine reduces the analysis time from ~4 

hours to ~30 minutes per sample. 

2. Potential indicator minerals
Pyrochlore supergroup minerals (as defi ned by Atencio et al.,

2010), columbite-tantalite series minerals (as defi ned by Černý 
and Ercit, 1985; Černý et al., 1992), rare earth element (REE)-
bearing fl uorocarbonates (such as bastnaesite and synchysite), 
monazite, and apatite (Bühn et al., 2001; Belousova et al., 
2002) are ideal carbonatite indicator minerals because of their 
high density and high content of key pathfi nder elements such 
as Nb, Ta, LREE (ΣLa, Ce, Pr, and Nd), and P. 

3. Methodology
3.1. Sampling, portable XRF analysis, and processing

Sediments in streams draining the area near the Aley
carbonatite contain high concentrations of Nb, LREE, and 
P (Mackay and Simandl, 2014). Within carbonatites, Nb is 
predominantly incorporated in pyrochlore and columbite-(Fe), 
LREE in REE-fl uorocarbonates, LREE, P, Th, Y in monazite, 
and P in apatite.

High pathfi nder element (Nb, Ta, LREE, Y, P, Ba, Sr, U, 
and Th) concentrations determined by pXRF in the 125-
250 μm dry sieved fraction (herein referred to as ‘RAW’) of 
stream sediments (Mackay and Simandl, 2014) and extent of 
mineralization in the Aley deposit (Kressal et al., 2010; Jones 
et al., 2014) gave the expectation that indicator minerals would 
be detectable by QEMSCAN®.

The Mozley C800 laboratory mineral separator and 
Wilfl ey #13 shaking table were tested. Both can consistently 
concentrate the pathfi nder elements and, by extension, targeted 
indicator minerals; however, the Mozley C800 is more suitable 
for processing smaller samples (Mackay et al., 2015a, b). 

3.2. QEMSCAN® methodology
Approximately 2 g of RAW sample and/or corresponding 

Mozley C800 concentrate (CON) were mounted on polished 
smear sections (Fig. 1). Analysis was performed using an 
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Fig. 1. Flow chart for QEMSCAN® analysis using the Particle Mineral Analysis routine. Based on QEMSCAN® software help fi le. Example 
grain is a polymineralic, or composite grain, with seven different mineral phases (identifi ed in red box).

automated FEI Quanta Scanning Electron Microscope (SEM) 
with a tungsten fi lament operating at 10.00 nA and a maximum 
voltage of 25 keV.

The QEMSCAN® procedure and IDiscover® software were 
used to collect and process data. As part of the automated 
QEMSCAN® procedure (Particle Mineral Analysis routine), a 
Back Scatter Electron (BSE) image of each grain was acquired, 
with individual particle boundaries determined by contrast in 
brightness (Fig. 1). Energy Dispersive X-Ray Spectroscopy 
(EDS) analysis, performed on a grid (6.5 μm spacing in this 
study), provided chemical composition and identifi ed each 
mineral based on a customized Species Identifi cation Protocol. 
Mineral abundances in weight percent (wt.%) were calculated 
using particle volume (based on surface area) and density of 
the identifi ed mineral. QEMSCAN® analysis output included 
particle count, mineral wt.%, particle size distribution(s), 
chemistry, and proportion of monomineralic (or liberated) 
and composite grains with mineral associations (Fig. 1). 

QEMSCAN® bulk chemical composition was derived from 
the chemical composition of mineral particles determined 
by EDS, volume measurements (which assume the polished 
smear section has representative mineral composition and each 
particle is uniform in shape), and idealized mineral densities. 

3.3. Chemical analysis
A 3.5-10.5 g split of each RAW sample and corresponding 

Mozley concentrates was analysed using lithium metaborate 
fusion followed by ICP-MS for trace elements, Inductively 
Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) 
for major elements, and XRF for Nb (when in concentrations 
>2500 ppm Nb). 

4. Results
4.1. Geochemistry

The geochemical composition of the unprocessed 125-250 
μm fraction of stream-sediment samples and corresponding 
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Mozley concentrates from the Aley carbonatite drainage 
were determined by ICP-MS, ICP-AES, and XRF analyses. 
Carbonatite pathfi nder elements associated with prospective 
indicator minerals were detected in all samples. Concentrations 
of Nb in RAW samples from the Aley drainage range from 
3000-10,000 ppm with an average of 5900 ppm. Concentrations 
in corresponding Mozley concentrates are substantially higher, 
ranging from 11,900-25,900 ppm Nb and averaging 17,600 
ppm Nb. Similarly, concentrations of Ta, Zr, LREE, U, Th, and 
P2O5 increased following Mozley processing.

4.2. Indicator mineral abundances
Mineral abundance by wt.% and particle count for each 

polished smear section were determined using QEMSCAN® 
analysis. The main carbonatite indicator minerals were 
detected in RAW samples from the Aley carbonatite without 
additional processing (Fig. 2). However, minimal processing 
by Mozley C800 table effectively concentrated heavy indicator 
minerals (Fig. 2). Specifi cally, pyrochlore abundance increased 
on average by 12.9 x, columbite-(Fe) by 2.4 x, monazite by 3.2 
x, REE-fl uorocarbonates by 2.6 x, apatite by 1.7 x, magnetite 
by 5.8 x, and zircon by 3.2 x. 

5. Discussion
5.1. Particle size distribution

QEMSCAN® provides particle size distributions for 
individual minerals in terms of particle count and weight 
percent in the 125-250 μm size fraction of RAW stream 
sediments and corresponding Mozley concentrates from 
the Aley drainage area. Particle size distributions measured 
by particle count for some trace minerals (eg. monazite and 
REE-fl uorocarbonates), are skewed towards smaller (<20 μm) 
particle diameters. This is most likely due to the presence of 
small inclusions of these trace minerals in composite grains. 
The particle count for pyrochlore (Fig. 3a), columbite-(Fe) 
(Fig. 3c), monazite, and apatite show an overall decreasing 
trend with increasing distance downstream of source rocks in 
the Aley carbonatite. Abundant mineral constituents and ore 
minerals (e.g., pyrochlore and columbite-[Fe]) occur as larger 
particles with nearly normal distributions of particle diameters 
(Figs. 3b, d).

5.2. Mineral abundance and pathfi nder element 
concentration

There is a good fi t between the concentration of carbonatite 
pathfi nder elements determined using laboratory geochemical 
analysis and abundance of carbonatite indicator minerals 
determined by QEMSCAN®. The highest R2 are obtained 
by comparing bulk sample chemistry and indicator mineral 
concentration in terms of wt.%. For example, Nb content is 
related to pyrochlore (R2=0.72; Fig. 4a) and columbite-(Fe) 
(R2=0.78; Fig. 4b) concentrations; fersmite is a minor constituent 
(Fig. 2). Total niobate (sum of pyrochlore, columbite-[Fe], and 
fersmite) concentration shows the best fi t with Nb content of 
samples (R2=0.90; Fig. 4c). As fersmite is a minor Nb-bearing 

constituent, a low R2 between Nb content (XRF) and fersmite 
concentrations (QEMSCAN®) is expected.

Light REE content is strongly related to monazite concentration 
(R2=0.91) and less strongly to REE-fl uorocarbonate 
concentration (R2=0.51; Fig. 4d). Concentration of P2O5 in 
RAW samples and corresponding Mozley concentrates is 
strongly related to apatite concentration (R2=0.98) and weakly 
to monazite content (R2=0.25). Thus, overall indicator mineral 

Fig. 2. Mineral abundances (wt.%; determined by QEMSCAN®) 
for RAW and corresponding Mozley C800 concentrates (CON) for 
selected samples a) AL-13-01, b) AL-13-04, and c) AL-13-16 from 
Aley (AL) carbonatite drainage. Concentration factors for CON 
relative to corresponding unprocessed samples (RAW) are shown in 
parentheses. Mineral abbreviations: pyrochlore (Pcl); columbite-(Fe) 
(Cmb); fersmite (Fer); REE-fl uorocarbonates (REE-Fl); zircon (Zrc); 
apatite (Ap); magnetite (Mag); hematite (Hem); rutile (Rt); amphibole/
pyroxene (Amp/Px); and barite (Brt).
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Fig. 5. Proportions of monomineralic (Mono) and composite grains with predominant mineral associations (in terms of mineral count and wt.%) 
for: a) and b) pyrochlore; c) and d) columbite-(Fe); e) and f) REE-fl uorocarbonates. Results are for RAW samples and corresponding Mozley 
concentrates (CON). Sample distance increases from directly above the deposit (AL-13-04) to 11.5 km downstream (AL-13-01). ‘Others’ refers 
to complex composite grains, and those containing unidentifi ed mineral phases. Abbreviations: pyrochlore (Pcl); columbite-(Fe) (Cmb); fersmite 
(Fer); REE-fl uorocarbonates (REE-Fl); apatite (Ap); magnetite (Mag); hematite (Hem); rutile (Rt); quartz (Qtz); dolomite (Dol); calcite (Cal); 
feldspar (Fsp); hematite (Hem); goethite (Gth); chlorite (Chl); biotite (Bt); and muscovite (Ms).
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abundance measured by wt.% is representative of bulk sample 
composition determined using ICP-MS, ICP-AES, and XRF. 

5.3. Mineral association in composite grains
QEMSCAN® determines the quantitative proportions 

of monomineralic (or liberated) grains and minerals in 
composite grains. Key mineral associations in composite 
grains and the proportion of monomineralic grains are shown 
in Fig. 5. Pyrochlore (wt.%) is predominantly contained 
in composite grains composed of minerals associated with 
carbonatite magmatism and alteration (columbite-[Fe], apatite, 
fersmite, ±monazite; Figs. 5a, b). Apatite (wt.%) is contained 
predominantly in monomineralic grains. Columbite-(Fe) (Fig. 
5d), REE-fl uorocarbonates (Fig. 5f), and monazite fall in 
between these two extremes. 

6. Conclusions
QEMSCAN® can detect indicator minerals in the dry sieved 

125-250 μm size fraction without additional processing from 
stream-sediment samples taken near the Aley carbonatite. 
Minimal processing using a Mozley C800 mineral separator 
increases the concentration of indicator minerals found in low 
concentrations in a predictable way. QEMSCAN® can detect 
and characterize particle sizes too small for hand picking and 
provides quantifi able proportions of monomineralic grains and 
mineral associations in composite grains. QEMSCAN® can 
fully characterize a sample in 3.5-4.5 hours using the ‘Particle 
Mineral Analysis’ routine, much faster than the 6-12 hours 
required for traditional techniques to characterize a single 
sample with mineralogically complex grains. 
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