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Abstract
After about 30 years, The British Columbia Geological Survey is revitalizing its mineral potential mapping efforts. This new modelling 
takes advantage of information gained from bedrock mapping carried out and mineral occurrences discovered since the 1990s, improved 
exploration techniques, and a better understanding of the geologic processes leading to mineralization. Furthermore, developments in 
high-level programming languages and exponential increases in computing power have led to significant advances in applying geographic 
information system (GIS) platforms and using computerized statistical methods to model mineral potential. The current work adopts a mineral 
systems approach, which emphasizes similarities between deposits and takes a large-scale view of all the components that control generating 
and preserving deposits (source, transport, trap, and deposition) using multiple geological features as proxies for the presence of a complete 
mineral system. We use the weights of evidence method for statistical spatial analysis of many mappable proxies (e.g., distance to intrusive 
rock contacts, density of fault intersections, presence of anomalous geochemical stream-sediment samples, and occurrence of magnetic high 
anomalies) to model the mineral potential for porphyry, volcanogenic massive sulphide, and mafic to ultramafic sulphide mineral systems in a 
large region of northwestern British Columbia. Area-frequency and percentile-frequency plots validate the models and suggest that the region 
is most prospective for porphyries. The current modelling will assist land-use conversations between multiple parties with diverse interests. 
The modelling will also be used to evaluate the provincial potential for critical minerals, particularly in underexplored areas.

Keywords: Mineral potential modelling, mineral potential map, land-use planning, mineral systems, statistical methods, geospatial data 
treatment, predictive maps, weights of evidence, data-driven modelling, porphyry deposits, volcanogenic massive sulphide deposits, magmatic 
mafic-ultramafic deposits

1. Introduction
The history of British Columbia is intertwined with mining, 

and the British Columbia Geological Survey has mapped and 
inventoried the mineral deposits of the province for more 
than 130 years (Sutherland Brown, 1998). Nonetheless, 
significant potential for additional discoveries exists because 
much prospective ground remains underexplored. Land-use 
decisions and co-management of natural resources require 
high-quality information and, nearly 30 years ago, the British 
Columbia Geological Survey initiated a study to assess the 
mineral potential of the entire province. Applying approaches 
developed by the United States Geological Survey (Brew, 1992; 
Singer, 1993) but modified for British Columbia, this work 
was the first state- or province-wide assessment of its kind. 
The project combined data about known mineral occurrences 
and the geology of the province and what was then understood 
about which rocks favour mineral deposition to develop a 
relative ranking of mineral potential, with defined ‘tracts’ of 
lower to higher potential (Kilby, 1995, 1996, 2004; Grunsky, 
1997). Prompted by the global search for critical minerals 

needed for a low-carbon future, the Survey started a program 
to inventory the critical minerals that are produced or could be 
produced in the province (Hickin et al., 2023, 2024) and renew 
mineral potential studies with a focus on these minerals. Since 
the original assessment was carried out, bedrock mapping 
projects have increased our knowledge of the rocks underlying 
the province, exploration techniques have improved, many 
new mineral occurrences have been discovered, and the 
geologic processes leading to mineralization have been 
better investigated. Furthermore, developments in high-
level programming languages and exponential increases in 
computing power have led to significant advances in applying 
geographic information system (GIS) platforms and using 
computerized statistical methods to model mineral potential 
(Partington, 2010; Porwal and Kreuzer, 2010; Harris et al., 
2015; Kreuzer et al., 2015; Ford et al., 2019; Yousefi et al., 2019, 
2021; Ford, 2020; Lawley et al., 2021, 2022). These advances 
have been adopted by geoscientists in industry, government, 
and academia for appraising mineral potential (Knox-Robinson 
and Wyborn, 1997; Harris et al., 2015; Kreuzer et al., 2015; 
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Lawley et al., 2021, 2022; McCafferty et al., 2023; Nykanen et 
al., 2023). The rejuvenated modelling at the British Columbia 
Survey applies the weights of evidence modelling technique, 
which, although is three decades old, has benefited from these 
advancements.

In this paper we focus on the methods we used to consider 
the prospectivity of porphyry, volcanogenic massive sulphide, 
and magmatic mafic to ultramafic sulphide deposits for a large 
region of northwestern British Columbia (Fig. 1), the results 
of which are presented in a series of mineral potential maps 
(Wearmouth et al., 2024a). A comparison of results between 
work done in the 1990s and a version of the current modelling 
is given by Wearmouth et al. (2024b). Elsewhere, Wearmouth 

et al. (2024c) present results for the sedimentary exhalative 
(SEDEX) and Mississippi Valley-type mineral systems in a 
large area of northeastern British Columbia.

The current study area includes the lands and traditional 
territories of many Indigenous rights holders, and this new 
mineral potential modelling will support decision-making 
processes and land-use decisions. The new work will also 
be used to evaluate the potential for critical minerals in 
the province, which are needed to support the low-carbon 
transition, grow the economy, diversify global supply chains, 
and continue as a preferred supplier for partner nations (Hickin 
et al., 2023, 2024).
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Fig. 1. Mineral potential modelling study area, 2023. Terranes after Colpron (2020).
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2. Methods
2.1. Modelling techniques

Depending on the purpose and the data available, different 
methods can be used to assess the mineral potential of an area. 
These methods are commonly expressed in terms of being 
‘knowledge-driven’ (‘expert-driven’) or ‘data driven’ (e.g., 
Bonham-Carter, 1994, p. 269). However, these terms are pure 
end members of a continuum and are unlikely to fully apply 
to any given case. For example, even though the 1990s BCGS 
modelling relied heavily on geoscience experts to make key 
decisions, it was based on the same data sources as the current 
work. The current work benefits from the knowledge gained 
from updates to these sources. Similarly, even though the current 
modelling uses computer algorithms instead of geoscience 
experts, human interventions and expert knowledge are still 
required at different stages. The fundamental difference between 
knowledge-driven and data-driven modelling is in how weights 
are assigned to the data (Bonham-Carter, 1994). In knowledge-
driven methods, data are reviewed and subjectively weighted 
by experts, relying on their level of expertise, and are thus 
considered more subjective (Bonham-Carter, 1994). Examples 
of knowledge-driven techniques include index overlay (Yousefi 
and Carranza, 2016) and fuzzy logic (e.g., Porwal et al., 2003). 
In data-driven methods, computer algorithms seek statistical 
associations or patterns within data to determine relevance to 
known training data and are thus considered more objective. 
Examples of data-driven methods include weights of evidence 
(e.g., Bonham-Carter et al., 1990), random forest (Ford, 2020), 
and neural networks (Singer and Kouda, 1999).

Any approach to modelling is limited by the data available, and 
results represent a time-specific evaluation; as new discoveries 
are made or additional data collected, older modelling 
may need updating (Ford et al., 2019). Knowledge-driven 
methods require no training data and may be more effective 
in underexplored or data-poor areas. Because of advances in 
GIS applications and computer power, statistical analysis of 
multivariant spatial data using ‘data-driven’ methods is far less 
labour intensive than the ‘knowledge-driven’ work done by the 
Survey in the 1990s, can be readily updated, and is more easily 
reproducible. We applied weights of evidence modelling as the 
data-driven method in this study.

Weights of evidence is a Bayesian statistical approach that 
allows the analysis and combination of various datasets to 
predict the location of a feature (Bonham-Carter, 1994). This 
technique calculates the relationship of the feature being 
tested for a given area and the number of training data points, 
in this case sites of mineralization, that fall within that area. 
The statistical spatial analysis process allows for a non-
biased assessment of many mappable proxies (e.g., distance 
to intrusive rock contacts, density of fault intersections, 
presence of anomalous geochemical stream-sediment samples, 
and occurrence of magnetic high anomalies) for ore-forming 
processes to determine their relevance to the mineral system 
(Bonham-Carter, 1994). We used the Arc-SDM extension for 
ArcGIS to carry out this analysis and the mineral potential 
modelling.

2.2. Mineral systems approach
Although mineral occurrences are relatively common, mineral 
deposits of economic value are not. All the right geological 
conditions need to come together at the right time and in the 
right place for an economic deposit to form. The mineral 
potential work carried out by the Survey in the 1990s (e.g., 
Kilby, 2004) emphasized the differences between deposit types 
and focussed on deposit profiles that classified occurrences into 
about 120 deposit types based mainly on genetic models (e.g., 
Lefebure and Jones, 2022). These profiles included descriptions 
of geological characteristics, mineral exploration techniques, 
resource data, age of mineralization, tectonic setting, and 
concepts about deposit origins.

In contrast, the current assessment adopts a mineral system 
approach, which emphasizes similarities between deposits and 
uses a large-scale view of all the factors that control generating 
and preserving deposits (e.g., Knox-Robinson and Wyborn, 
1997; Hronsky and Groves, 2008; McCuaig et al., 2010; Ford et 
al., 2019; Groves et al., 2022). Originally proposed by Wyborn 
et al. (1994) and drawing on ideas from the petroleum industry 
(e.g., Magoon and Dow, 1994), the geological components that 
have been traditionally used to define a single mineral system 
include energy to drive the system, source of ligands, source 
of metals, transport pathways, traps, and outflow zones (Knox-
Robinson and Wyborn, 1997). Adapting the traditional use, the 
mineral system concept that we adopt uses source, transport, 
and trap, as well as deposition of mineralization to consider 
the presence of a complete mineral system. The approach 
recognizes that the ore deposit, which is relatively small (<1 
km in plan view), is the central feature of a larger system 
that may be detectable at a regional scale (>10 km in plan 
view). The mineral systems approach focusses on processes 
that are common within mineral systems, which enables the 
simultaneous assessment of many deposit types at a variety of 
scales (McCuaig et al., 2010). An economic deposit is unlikely 
if any one of source, transport, and trap are lacking; areas that 
bear evidence for all components will be evaluated as being 
favorable for mineralization. Being process-based, the mineral 
systems approach is neither restricted to a geological setting 
nor limited to a specific ore deposit type.

2.3. Mineral potential modelling workflow overview
The current mineral potential modelling workflow (Fig. 2), 

based on Agterberg et al. (1990), Bonham-Carter et al. (1990), 
Knox‐Robinson and Wyborn, (1997), and Harris and Sanborn-
Barrie (2006), uses multiple datasets, knowledge of mineral 
systems, and the weights of evidence (WofE) technique to 
assess mineral potential. At the start of a project, a study area is 
reviewed for known mineralization or known ore deposit types, 
which are used to define the mineral systems in the region 
and to identify training points. The targeted mineral systems 
are then broken down into the critical processes that dictate 
their formation, and a list of predictive variables is developed. 
Available data are then interrogated for mappable features that 
may represent one or more of these formative processes. At 
this stage, data processing may be required such as classifying, 
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interpolating, filtering, and attributing raw data. Using the 
weights of evidence method, statistical spatial analysis is 
conducted on raw or processed data to determine its relevance 
to training points, which represent known mineralization in the 
study area. This process results in the creation of predictive 
maps (binary or multi-class), which represent map patterns that, 
based on the statistical correlations, are deemed to be potential 
predictors for the mineral system. Each predictive map is given 
a weighting based on its spatial association with the training 
points, which is calculated using the weights of evidence 
technique (Bonham-Carter et al., 1990; Bonham-Carter, 1994). 

Although the weights of evidence modelling technique is 
primarily data driven, expert knowledge and input are needed 
at several stages of the workflow to ensure that the results are 
geologically meaningful. For example, a selection of predictive 
maps, which typically have the highest spatial correlation with 
the training points, are chosen by a geologist to be integrated 
using weights of evidence. The final mineral potential map 
illustrates the relative geologic potential for the mineral system 
across the study area. Final models may also be validated using 
other known mineral occurrences in the study area that were 
not used in the modelling process (Bonham-Carter et al., 1990; 
Bonham-Carter, 1994). 

Whereas other data-driven modelling techniques have 
demonstrated greater predictive performance, weights of 
evidence benefits from its ease of interpretability and handling 
of missing values. Weights of evidence provides a clear and 
interpretable framework, which is crucial to understand the 
reasoning behind predictions. Machine learning modelling 
methods such as neural networks commonly act as ‘black 
boxes’, making it challenging to identify how the input maps 

affect the prospectivity values. Readily explainable results 
are important in cases, such as land-used planning, where 
different parties faced with making decisions that have long-
term consequences have a common understanding (Samek and 
Müller, 2019). Furthermore, weights of evidence can explicitly 
manage missing values during the modelling process without 
the need for imputation. The areas of missing data are assigned 
a neutral weight to account for these areas in the statistical 
calculations (Ford, 2015). In comparison, machine learning 
models require data to be imputed for these areas, which 
may not account for the complexity, variability, and spatial 
correlation inherent in many geological datasets.

3. Northwestern British Columbia study
3.1. Study area
In this study, we focus on arc-related terranes in northern 
British Columbia (north of latitude 56o) that are prospective for 
the porphyry, volcanogenic massive sulphide, and magmatic 
mafic to ultramafic sulphide mineral systems, eliminating areas 
east of the Rocky Mountain trench, which lack these systems.

3.2. Geologic context
The study area spans a large segment in the northwestern part of 
the Canadian Cordillera (Fig. 1). This 2000 km long northwest-
trending accretionary orogen consists of several long, narrow, 
far-travelled ‘exotic’ terranes (in some cases, 1000s of km) that 
welded to the western margin of Ancestral North America in 
the last 180 million years (e.g., Nelson et al., 2013; Colpron and 
Nelson, 2021). The Cordillera records a history of supercontinent 
rifting and a succession of island arc volcanosedimentary 
and intrusive assemblages (terranes) developed outboard of 
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The mineral system of interest is broken down into the critical ore-forming processes and a list of predictive maps is produced in the form of a 
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Ancestral North America and accreted to each other and to the 
proto-continental margin with final amalgamation produced by 
collisions driven by westward motion of the North American 
continental plate. The amalgamated Cordillera then became the 
site of Cretaceous and Cenozoic arc and post-arc magmatism. 
Terrane evolution continues today as the Juan de Fuca plate 
slides beneath Vancouver Island. As reviewed by Nelson et al. 
(2013), Hickin et al. (2017) and Colpron and Nelson (2021), 
the diverse tectonic processes, from supercontinent breakup 
through development of long-lived arc terranes, to terrane 
accretion and post-accretion magmatism, metamorphism, 
deformation, and sedimentation, have generated diverse 
mineral systems across the province.

West of Ancestral North America, Cordilleran terranes 
are commonly grouped into superterranes and terranes (Fig. 
1). In Ancestral North America (including Cassiar terrane),  
predominantly sedimentary rocks were deposited on Archean 
and Paleoproterozoic cratonic basement. These Paleoproterozoic 
to Cambrian successions were deposited during and after the 
breakup of the supercontinent Rodinia, which created the 
western margin of Laurentia, the nucleus of what is now North 
America. The Intermontane superterrane consists of a diverse 
group of Late Paleozoic to Mesozoic volcanosedimentary 
assemblages and kindred intrusive bodies that formed mainly 
in and adjacent to island arcs outboard of Ancestral North 
America in the proto-Pacific Ocean. The Insular superterrane 
consists of similar island arc terranes; the Intermontane-Insular 
terrane boundary lies within the syn- to post-accretionary 
Coast Plutonic complex, a linear arc-axial belt that extends 
the length of the Cordillera. The Outboard terranes are mostly 
late Mesozoic to Cenozoic forearc siliciclastic assemblages, 
bounded to the west by the present-day Cascadia subduction 
zone and Queen Charlotte fault. Modern-day volcanic 
complexes related to Cascadia subduction are distributed along 
the length of the western Cordillera, and many of the terranes 
are partially covered by sedimentary rocks that were deposited 
during terrane accretion and collision, when older rocks were 
deformed, uplifted, eroded, and redeposited in newly created 
sedimentary basins.

Current exploration in the study area, which includes parts 
of the Northwest and North Central mining regions, focusses 
on a diverse suite of deposits (see summary in Clarke et al., 
2024). The study area includes two active mines (Brucejack 
and Red Chris) and one mine (Premier Gold) is on track to 
have its first gold pour in 2024. All three are in the ‘Golden 
Triangle’, the popular name for a loosely defined area in the 
Northwest Region containing significant gold, silver, copper, 
and molybdenum deposits (British Columbia Geological 
Survey, 2023).

3.3. Mappable mineral system proxies
The source, transport, trap, and deposition processes of 

mineral systems may be represented spatially using geological 
proxies (Ford et al., 2019). To produce such proxies, research 
into the mineral system, both generally and specific to the region 

being modelled, is undertaken at the beginning of a project. 
Information can come from a variety of sources including 
in-house expertise, company reports, and the literature. This 
information is used to prepare a list of all the ore-forming 
processes that describe the mineral system (McCuaig et al., 
2010; Ford et al., 2019) that can serve as mappable proxies 
to be tested in the modelling process. The modelling work 
presented herein considers the porphyry, volcanogenic massive 
sulphide volcanogenic massive sulphide, and magmatic mafic 
to ultramafic mineral systems.

3.3.1. Porphyry mineral systems
Porphyry systems can form low-grade (commonly <0.5%), 

high-tonnage (commonly > 100 Mt) ore bodies where silica-
rich magmas migrate upwards to solidify at shallow levels in 
the Earth’s crust and are chemically altered by circulating hot 
waters. They form in subduction settings where hydrous arc 
magmas generated by partial melting of the down going slab 
and adjacent mantle scavenge metals and rise into the overlying 
crust (e.g., Sillitoe, 1972, 2010; Lee and Tang, 2020; Rezeau and 
Jagoutz, 2020; Park et al., 2021). Episodes of porphyry copper, 
molybdenum, gold, and silver mineralization, particularly 
in the 15 million-year interval spanning the Jurassic-Triassic 
boundary in Quesnellia and Stikinia (Fig. 1), are important to 
British Columbia as a whole (Logan and Schroeter, 2013; Logan 
and Mihalynuk, 2014; Sharman et al., 2020) and in our study 
area (e.g., Rees et al., 2015; Febbo et al., 2019; Nelson and Van 
Straaten, 2020; Ootes et al., 2020; Ootes, 2023; van Straaten 
et al., 2023). In addition to the current Red Chris mine, the 
study area contains numerous porphyry related past-producing 
mines, current proposed mines, and advanced exploration 
projects (Clarke et al., 2024), the generation of which is directly 
tied to the multistage evolution of the Stikine and Quesnel arc 
terranes between ca 220 and 170 million years ago (Nelson 
and Van Straaten, 2020). Of the 11 mines that operated in 
British Columbia in 2023, seven are porphyry deposits, and the 
province is the largest Canadian producer of copper and only 
producer of molybdenum, both of which are on the national 
critical minerals list (NRCan, 2022). They may also contain 
other minor ‘companion metals’ (Mudd et al., 2017) such as 
the platinum group elements (PGE), rhenium, tellurium, and, 
in the more Mo-rich porphyry deposits, beryllium, bismuth, 
lithium, niobium, the rare earth elements, tantalum, tin, and 
tungsten (Sillitoe 1983; Nobel et al., 1995; John and Taylor 
2016; Milhalynuk and Heaman, 2002; Velasquez et al., 2020). 

3.3.2. Volcanogenic massive sulphide mineral system
Volcanogenic massive sulphide (VMS) deposits are 

accumulations of sulphide minerals precipitated at sites of 
rift-related submarine volcanism on the floors of ancient 
and modern seas. The deposits form where metal-rich fluids 
heated by volcanic processes rise, discharge, and mix with 
seawater (Lydon, 1984, 1988; Franklin et al., 2005; Galley 
et al., 2007; Cousens and Piercey, 2008; Piercey, 2011, 2015; 
Ross and Mercier-Langevin, 2014), and may contain economic 
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concentrations of copper, zinc, lead, silver, gold, and cobalt. 
Different types of VMS deposits are distributed across the 
study area in the Cache Creek, Yukon-Tanana, and Alexander 
terranes and, particularly, near the western flank of Stikine 
terrane, which hosts several past-producing mines (Barresi et 
al., 2015; Nelson and Van Straaten, 2020; Hunter et al., 2022; 
Northcote, 2022). The primary metals are copper and zinc, with 
secondary lead. More rarely, volcanogenic massive sulphide 
systems contain cobalt (e.g., Windy-Craggy, Peter and Scott, 
1999; Leybourne et al., 2022), or are rich in gold and silver 
(Eskay Creek; Sherlock et al., 1999; Mercier-Langevin et al., 
2011). Potential companion critical metals include bismuth, 
cobalt, gallium, germanium, indium, antimony, tin, tellurium, 
and thallium (Paradis, 2015; Leybourne et al., 2022).

3.3.3. Magmatic mafic to ultramafic mineral system
Magmatic mafic to ultramafic sulphide deposits, commonly 

with concentrations of nickel, copper, platinum group 
elements, and chromium, are found in mafic to ultramafic 
intrusive bodies where sulphide minerals have crystallized and 
settled in magma chambers sourced from mantle-derived melts 
(Naldrett, 1999, 2010; Barnes and Lightfoot, 2005; Lawley 
et al., 2021). Although commonly considered to be related to 
rifts and/or plumes at sites of plate divergence, deposits formed 
at sites of plate convergence in suprasubduction, or post-
subduction settings are being increasingly recognized. These 
include deposits in the Yukon-Tanana and Quesnel terranes 
of the study area that were emplaced during accretion of arc 
terranes to Ancestral North America (Nixon et al., 2019, 2020; 
Nott et al., 2019). Magmatic mafic to ultramafic sulphide 
deposits represent a significant system that may host economic 
concentrations of nickel, copper, the platinum group elements 
and may have companion metals such as vanadium, titanium, 
chromium, and scandium (Wang et al., 2021).

3.4. Geospatial data sources
The data used in the current modelling come from MINFILE, 

BC Digital Geology, and geochemical databases curated by 
the British Columbia Geological Survey and integrated with 
MapPlace, the Survey’s open access geospatial web service. 
We also used regional-scale gravity (NRCan, 2020a) and 
aeromagnetic data (NRCan, 2020b). MINFILE is an inventory 
documenting more than 16,100 metallic mineral, industrial 
mineral, and coal occurrences in the province. It provides 
information about occurrence location, host rock, mineralogy, 
commodities, country rocks, cross-cutting intrusions, 
structures, metamorphism, alteration, age, presumed deposit 
type, and grade and tonnage. BC Digital Geology provides 
bedrock geology mapping with a typical scale of 1:50,000 
(Cui et al., 2017). The provincial geochemical databases hold 
field and geochemical data from multi-media surveys by the 
Geological Survey of Canada, the BCGS, and Geoscience BC. 
The databases contain results from the Regional Geochemical 
Survey program including analyses from stream-sediment, 
lake sediment, moss, and water samples (e.g., Lett, 2011; 

Hickin and Plouffe, 2017; Lett and Rukhlov, 2017; Han and 
Rukhlov, 2020a), till surveys (Bustard et al., 2017, 2019), and 
lithogeochemical samples (Han and Rukhlov, 2020b). We 
chose datasets that had maximal spatial coverage across the 
study area and the ability of the data to capture the components 
of a mineral system unambiguously.

3.5 Geospatial data processing
Compiled data were processed by classifying and attributing 

rock units, creating point datasets from fault data (fault 
intersections, bends, jogs, and splays), generating stream 
catchment maps and, for geochemical data, determining 
anomalous thresholds and creating geochemical anomaly grids. 

Bedrock geology was queried into groupings such as rock 
type, terrane designation, lithostratigraphic unit, interpreted 
environment, and specific time interval (for a complete 
description of rock groupings for each mineral system 
see Appendix A, BCGS_P2024-02.zip). Fault data were 
concatenated by joining contiguous line segments with similar 
orientations. Faults lengths and average orientations were then 
attributed to the concatenated lines. Derivative point datasets 
were produced from fault polylines that represent intersections, 
bends, jogs, and splays. These datasets were created using data 
processing tools in MapInfo spatial data modelling software 
(MI-SDM). Fault intersections were defined as points where 
faults cross or touch, regardless of their orientation. Fault 
bends were defined as any change in angle of between 15 and 
80 degrees along a fault length of 0 to 10 km. Fault jogs were 
defined as any two connected subparallel fault segments (<30° 
difference in angle) with an overlap or underlap of up to 500 
m and a separation between the segments of 100-300 m. Fault 
splays were defined as nodes between a primary fault and 
another fault segment branching off at an angle of 5-35°, with a 
maximum separation of 100 m between the two segments and a 
minimum distance of 100 m from the end of the primary fault.

Geochemical datasets were reviewed to ensure that the 
range of reported values was reasonable for each element. In 
cases of analysis by different methods, results from the most 
precise modern technique were used. Below detection results 
were replaced with half of the lowest detection limit for each 
element. Anomalous thresholds were determined for each 
element from stream sediment and lithogeochemistry samples 
using whole dataset statistics. The thresholds (Table1) were 
determined by examining the percentile values, cumulative 
probability plots, and Tukey Outliers (defined as 1.5 multiplied 
by the inter-quartile range). Using the anomalous thresholds as 
cutoffs, the geochemical point data were rasterized into grids. 
Areas above the threshold value were considered anomalous, 
areas below the threshold were non-anomalous; no-data areas 
were also included in the weights of evidence calculations. 
Lithogeochemistry data (n=3,575), collected as bedrock 
grab samples, were converted into maps for each element 
by buffering to 2000 m, attributing each buffered polygon as 
anomalous, non-anomalous, or no data (no sample or element 
not measured), and converted into a raster, while giving 

http://cmscontent.nrs.gov.bc.ca/geoscience/PublicationCatalogue/Paper/BCGS_P2024-02.zip
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priority to the anomalous polygons where they overlap with 
non-anomalous or no data areas. 

Stream geochemical data (n=14,834) were analyzed using a 
digital elevation model (DEM) image to define catchments with 
hydrology tools in MapInfo Discover. One map was created 
for each element by determining the catchments that contain 
anomalous samples and the catchments that only contain non-
anomalous samples, and then combining the two to create a 
multiclass grid (including catchments with no data as the third 
class). An alternative approach was also tested in which we 
averaged the stream sediment assays within each catchment 
and then reclassified the resulting raster into ten classes, which 
were then tested for spatial association.

3.6. Training points
The weights of evidence method requires sites of known 

mineralization to use as training points for determining spatial 
correlations and weights for each predictive map being tested. 
We selected training points for the three mineral systems 
from the MINFILE database based on spatial distribution, 
representation of the mineral system, and the degree of 
confidence in the interpreted mineral system classification. To 
avoid including erroneous classified training data, the number 
of training points was limited to known, well-studied deposits 
positively identified as being representative of a given mineral 
system. The porphyry model has twelve training points (Table 

2, Fig. 3), the VMS model has eleven (Table 3, Fig. 4), and the 
magmatic mafic to ultramafic sulphide model has eight (Table 
4, Fig. 5); Appendix B (BCGS_P2024-02.zip).

3.7. Spatial analysis using weights of evidence
The study area was converted into a 50 m by 50 m grid, 

which was chosen as the minimum scale that the data could be 
viewed and used. The cell size represents the resolution of the 
model and the cell distribution for all subsequent grids created 
during the modelling process. A training point representing an 
economic deposit was presumed to have an average footprint 
of 1 km2. This assumed footprint, referred to as a unit cell 
area, was used in the weights of evidence calculations for each 
training point. 

Applying the weights of evidence method as described by 
Bonham-Carter et al. (1990) and Bonham-Carter (1994) and 
using input parameters (area being examined, unit cell area, 
number of training points) a ‘prior probability’ was calculated for 
each mineral system (Appendix A, BCGS_P2024-02.zip). This 
prior probability represents the chance of randomly discovering 
a deposit before any additional evidence for mineralization is 
applied. The aim of weights of evidence modelling is to test 
if adding evidence increases or decreases the value of the 
prior probability of each grid cell. The probability of finding 
a new occurrence after adding layers of evidence is referred to 
as the ‘posterior probability’. In the present example, factors 

Stream sediment (in ppm) 

Element Threshold Tukey 
Outlier 

Probability 
plot 

75th 
Percentile 

85th 
Percentile 

95th 
Percentile 

Ag 0.33 0.33 0.40 0.17 0.28 0.46 
As 23 23 28 11 18 38 
Au 0.010 0.010 0.011 0.004 0.008 0.022 
Co 33 33 29 18 22 30 
Cr 134 134 130 65 94 169 
Cu 106 106 111 54 74 110 
Mo 4 4 8 2 4 7 
Ni 121 121 115 58 91 142 
Pb 19 19 17 10 14 26 

 

Lithogeochemistry (in ppm unless otherwise stated)  

Element Threshold Tukey 
Outlier 

Probability 
plot 

75th 
Percentile 

85th 
Percentile 

95th 
Percentile 

Ag 2.4 2.4 1.1 1.0 5.0 43.0 
Au 67 67 61 27 140 1261 
Co 103 103 86 46 83 190 
Cr 202 202 230 86 205 458 
Cu 235 419 235 177 1005 9500 
Ni 95 95 180 40 84 390 
Pb 42 42 67 19 46 938 

S (%) 0.3 0.3 0.4 0.1 0.7 2.5 
Zn 223 223 129 113 204 2230 

 

Table 1. Geochemistry anomalous threshold values.

http://cmscontent.nrs.gov.bc.ca/geoscience/PublicationCatalogue/Paper/BCGS_P2024-02.zip
http://cmscontent.nrs.gov.bc.ca/geoscience/PublicationCatalogue/Paper/BCGS_P2024-02.zip
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Name Status Mineralization style Cordilleran belt Terrane 
Galore Creek Developed prospect Alkalic porphyry Cu-Au Intermontane Stikine 
Kemess South Past producer Porphyry Cu +/- Mo +/- Au Intermontane Stikine 
Schaft Creek Developed prospect Porphyry Cu +/- Mo +/- Au Intermontane Stikine 
Saddle North Prospect Porphyry Cu +/- Mo +/- Au, 

   

 

Intermontane Stikine 
Mitchel Developed prospect Porphyry Cu +/- Mo +/- Au Intermontane Stikine 
Red Chris Producer Porphyry Cu +/- Mo +/- Au, 

   

Intermontane Stikine 
Thorn Prospect Subvolcanic Cu-Ag-Au (As-

 

Insular Stikine 
Eaglehead Developed prospect Porphyry Cu +/- Mo +/- Au Intermontane Quesnel 
Bronson Slope Developed prospect Porphyry Cu +/- Mo +/- Au, 

   

 

Insular Stikine 
Gnat Pass Developed prospect Porphyry Cu +/- Mo +/- Au Intermontane Stikine 
Hat Prospect Alkalic porphyry Cu-Au Intermontane Stikine 
Ruby Creek Developed prospect Porphyry Mo (Low F- type) Intermontane Cache Creek 

 

Fig. 3. Training points used in the porphyry model (red diamonds) and all porphyry mineral occurrences (black dots). Data from MINFILE.

Table 2. Porphyry model training points.
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Name Status Mineralization style Cordilleran belt Terrane 
Eskay Creek Past producer Noranda/Kuroko Intermontane Stikine 
Dago Past producer Noranda/Kuroko Intermontane Stikine 
Tulsequah Chief Past producer Noranda/Kuroko Intermontane Stikine 
Kutcho Developed prospect Noranda/Kuroko Intermontane Quesnel 
Granduc Past producer Besshi Intermontane Stikine 
Rock and Roll Developed prospect Besshi Intermontane Stikine 
Joss’alun Prospect Cyprus Intermontane Stikine 
Windy Craggy Developed prospect Insular Alexander 
Mount Henry Clay Prospect Insular Alexander 
Foremore Prospect 

Besshi 
Besshi
Noranda/Kuroko Intermontane Stikine 

Inel Developed prospect Besshi Intermontane Stikine 

60° 

56° -
Legend 

♦ VMS training point ( n= 11)

• VMS MINFILE occurrence

• Towns

55° - Roads

c:::::J Study area
I

-137° -136° -135° -134° 

Spatial Reference 
Name: NAD 1983 BC Environment 
Albers 
PCS: NAD 1983 BC Environment 
Albers 
GCS: GCS North American 1983 
Datum: North American 1983 
Projection: Albers 
Map Units: Metre 

-133° -132° 

-128° 

-131° 

-127° -126° 

-127° 

-125° 

50 
Kilometres 

-125° 

-124° 

56° 

Fig. 4. Training points used in the volcanogenic massive sulphide model (blue diamonds) and all volcanic massive sulphide mineral 
occurrences (black dots). Data from MINFILE.

Table 3. Volcanogenic massive sulphide model training points.



10

Wearmouth, Czertowicz, Peters, Orovan

British Columbia Geological Survey Paper 2024-02

Name Status Mineralization style Cordilleran belt Terrane 
E&L Developed prospect Tholeiitic intrusion-hosted Intermontane Stikine 

Turnagain Nickel Developed prospect Alaskan-type Intermontane Yukon-Tanana 

Orca Showing Alaskan-type  Intermontane Cache Creek 
Nixon Showing Alaskan-type Intermontane Quesnel 
Queen Prospect Alaskan-type Intermontane Quesnel 

Anyox-Rodeo Showing Mafic-ultramafic associated Intermontane Stikine 

Taurus Showing Alaskan-type Intermontane Quesnel 
TNS12 Showing Tholeiitic intrusion-hosted Intermontane Stikine 

 

60° 

59° 

58° 

57° 

56° --

55° 

--

-137° 

♦ 
• 

Magmatic mafic-ultramafic 
training point (n=8) 
Magmatic mafic-ultramafic 
MINFILE occurrence 

• Towns

Roads

Study area
I

-136° -135° -134° 

-133° 

Datum: North American 1983 

-133° -132° 

132° -131° -130° -129° -128° -127° -126° -125° -124° 

57° 

56° 

-131° -130° -129° -128° -127° -126° -125° 

Fig. 5. Training points used in the magmatic mafic to ultramafic sulphide model (purple diamonds) and all mafic-ultramafic sulphide mineral 
occurrences (black dots). Data from MINFILE. 

Table 4. Magmatic mafic-ultramafic model training points.
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that lead to posterior probability values that are greater than 
prior probability values were layered into the mineral potential 
model. Layers of evidence, or predictive maps, that reduce the 
search space while capturing the most training points will have 
the best spatial correlations and their combination will result in 
highest posterior probabilities when combined into the model 
(Bonham-Carter, 1994; Bonham-Carter et al., 1990).

The spatial correlation of a mappable feature (e.g., distance 
to faults) is calculated by using the relationship between the 
area including the feature and the number of training points 
within that area compared to the number of points outside. In 
the presence of a feature, the calculation produces a positive 
W+ value for features that correlate with the training data and 
a negative W+ value for the features that do not correlate. In 
the absence of a feature, the opposite applies for the W- value. 
Each feature gets a W+ and a W- value representing its positive 
and negative weight. These values are the weights that are 
used in the model calculations when the predictive maps are 
combined into a mineral potential map (Bonham-Carter et al., 
1990; Bonham-Carter, 1994). 

The spatial correlation (contrast value ‘C’) is calculated from 
the difference between W+ and W-. The standard deviations of 
W and C (Ws and Cs) are also calculated. These values are used 
to calculate studentized value of the contrast (StudC) which is 
the ratio of the standard deviation of the contrast (Cs) to the 
contrast (C). This provides an indication of the uncertainty in 
the C value; if the contrast is large compared with its standard 
deviation, it implies that the contrast is more likely to be real. 
The higher the values of C and StudC the stronger the spatial 
correlation of the feature being tested with the training data 
(Bonham-Carter et al., 1990; Bonham-Carter, 1994).

4. Spatial correlation results
The mappable proxies that represent one or more of the ore-

forming processes for a particular mineral system are used to 
create predictive maps. Statistical spatial analysis using the 
weights of evidence method, as described above, is applied to 
a list of such proxies to create binary or multi-class predictive 
maps, and to derive weights that are used to combine the 
predictive maps into the final mineral potential map (Appendix 
B, BCGS_P2024-02.zip).

First, mappable proxies are tested for spatial correlation 
with the training data. Polygon features such as geological 
units can be tested directly for statistical significance based on 
the presence of a feature, or by buffering a feature at varying 
distances to identify an area of influence such as ground 
surrounding an intrusion, or to account for shallowly dipping 
units or uncertainty in the mapping. Point and line data are 
typically buffered to multiple distances before being tested. 
These data can also be gridded to determine the density of 
features or to show the interpolated distribution of elements, 
such as for a geochemistry dataset. Continuous data like 
geophysics maps or density grids, are reclassified into a small 
number of groups to test for correlation with training data. 

The spatial correlation results from the tested features are 

used to determine how the data are classified into binary maps 
based on the statistical results and geological reasoning. For 
example, when testing multiple distance buffers to determine 
the optimal distance from a feature (e.g., proximity to faults) 
the C value (as described above) can be used to determine 
the cutoff distance (Fig. 6). However, because there isn’t 
always a clear maximum on the contrast curve, subjective 
judgment, supported by geological reasoning, comes into play 
(Bonham-Carter, 1994). If the cutoff distance is geologically 
unreasonable, a geologically reasonable distance with a lower 
C value, but still statistically valid, needs to be used. 

This statistical spatial analysis is repeated for different data 
sets to create a list of predictive maps that collectively represent 
the mineral potential for a mineral system. The predictive maps 
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Fig. 6. Testing multiple buffer distances to determine the optimal 
distance. a) Proximity to fault map is used as the original feature. b) 
Buffer distance applied to fault traces. Contrast values are calculated 
for every 50 m from fault traces. c) The area inside the determined 
cutoff distance (red) will be classified as favourable to create a binary 
predictive map, and everything outside (blue) will be classified as 
unfavourable. d) Contrast value plot vs distance from fault trace. The 
highest contrast value (near 2200 m) indicates the highest statistical 
correlation with the training data and the area captured by the buffer 
is greatest at 2200 m. e) Studentized contrast plot vs distance from 
fault trace. The higher the studentized contrast value the more likely 
the value is valid, which in this case corresponds to 2200 m from the 
fault trace.

http://cmscontent.nrs.gov.bc.ca/geoscience/PublicationCatalogue/Paper/BCGS_P2024-02.zip
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are typically binary (feature present/feature absent) but can also 
be multiclass, such as in the case of fault density where it may 
be relevant to define areas of low, moderate, and high density 
in the same map. The weights for the final predictive maps 
are recalculated to integrate into the final model. The spatial 
analysis we used to create each predictive map, the modelling 
parameters, the specific ore-forming process being tested, and 
statistical results allows for comparisons between predictive 
maps, which helps with deciding the best combination of 
proxies to include in the final mineral potential model. This 
information is recorded in an Excel spreadsheet called a spatial 
data table. This record is also important if the model is revisited 
in the future and should contain enough information to make 
the entire process repeatable (Ford et al., 2019).

In this study, between 49 and 81 predictive maps for each 
mineral system were produced and tested for spatial correlations 
with the training data. We inferred a strong spatial correlation 
from C and StudC values of >2.5, a moderate correlation from 
C and StudC values between 1 and 2.5, and weak correlations 
from C and StudC values < 1. A summary of key results is 
provided below for the source, transport, trap, and deposition 
components of each mineral system. Spatial correlation 
results are in Appendix A; accompanying spatial files (training 
points, predictive maps. and posterior probability grids) are in 
Appendix B (BCGS_P2024-02.zip).

4.1. Porphyry spatial correlations
4.1.1. Porphyry source

Porphyry mineral systems are typically temporally and 
spatially associated with highly fractionated intermediate to 
felsic intrusions, which commonly have porphyritic textures. 
Felsic to intermediate intrusions and those with porphyritic 
textures were selected from the bedrock geology map and 
found to have weak correlations. These rock types were also 
buffered at 50 m intervals to identify the optimal sphere of 
influence around the intrusions for known mineralization. The 
highest correlations were at 2050 m for felsic to intermediate 
intrusions and 150 m for porphyritic intrusions. All intrusive 
rocks buffered to 2150 m also had a strong correlation. Magnetic 
highs interpreted to represent buried intrusions were selected 
from the residual total field map and showed a moderate 
correlation with the training data. Together, the magnetic highs 
and felsic to intermediate intrusions have a weak correlation 
with the training data. A much stronger correlation was 
identified when the combined rock types were buffered to 1250 
m. Volcanic units queried from the bedrock geology map have 
a strong spatial correlation at a buffer distance of 2350 m. A 
combined map of intrusions and volcanic rocks also gave a 
strong correlation.

Most porphyry deposits in British Columbia were generated 
in the Triassic and Jurassic, and strong correlation was 
obtained for rocks formed between ca. 237 Ma and 170 Ma 
in the study area. Stikine and Quesnel terranes were tested 
separately; Stikine terrane received a strong correlation 
whereas Quesnel terrane received no valid statistics. However, 

the two terranes combined received a stronger correlation 
than when independently tested. Given their importance in the 
region (e.g., Nelson and van Straaten, 2020) the Stuhini Group 
(Upper Triassic) and Hazelton Group (uppermost Triassic to 
Middle Jurassic) were also selected and tested individually. 
Both received moderate correlations but captured few training 
points. However, with buffer distances of 750 m for the Stuhini 
Group and 2500 m for the Hazelton Group, stronger spatial 
correlations were obtained.

4.1.2. Porphyry transport
Faults have long-been recognized as paths for fluid flow. 

We therefore tested various subsets of fault data including 
fault length (classified into major, moderate, and minor) and 
orientation. All faults with an 850 m buffer distance and minor 
faults with a 450 m buffer correlate best with the training data. 
Strong correlations were also observed for faults with north, 
east, and northeast trends.  

Intrusive contacts are important paths for fluid flow in 
porphyry mineral systems. We turned intrusive contacts into 
polylines that were buffered to test for an association with 
the training data. The felsic to intermediate intrusion contacts 
have a high correlation within a 2000 m buffer distance. The 
combination of intrusive contacts with magnetic high contacts 
also has a strong correlation with a buffer distance of 1000 
m. Porphyritic rock contacts received a strong correlation 
but captured few training points. The unconformity between 
the Stuhini and Hazelton groups, also of regional economic 
significance (e.g., Nelson and Kyba, 2014; Nelson and van 
Straaten, 2020) was converted to polylines and tested for spatial 
correlation. The unconformity received a strong correlation, 
but only captured five training points. 

4.1.3. Porphyry trap
Fault intersections, bends, jogs, and splays represent sites 

that could serve as traps for mineralization. These features 
were derived from the fault dataset and buffered to test for 
correlations with the training data. Fault intersections with 
a buffer distance of 800 m and fault oversteps with a buffer 
distance of 1550 m both have strong correlations. Fault density 
may also help highlight potential structural traps. Density maps 
were created for faults, fault intersections, bends, jogs, and 
splays using the point and line density tools in Spatial Analyst. 
The density grids were classified into ten classes and tested for 
spatial correlation with the training data. High fault density, 
fault intersection density, and fault bend density all received 
strong correlations.

4.1.4. Porphyry deposition
Strong correlations for porphyry mineral occurrences and 

the training data were recorded within a buffer of 7800 m. 
Commonly found at shallow levels of porphyry systems, high 
sulphidation epithermal mineral occurrences correlated with 
training data within 8600 m. Point density grids of the porphyry 
and high sulphidation epithermal occurrences had strong 

http://cmscontent.nrs.gov.bc.ca/geoscience/PublicationCatalogue/Paper/BCGS_P2024-02.zip
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correlations. A density map of all metallic mineral occurrences 
extracted from MINFILE also has a strong correlation with the 
training data.

Anomalous stream catchment maps for each element (Cu, 
Pb, Zn, Mo, Ni, Co, Cr, S, Au, Ag, PGE) had only weak to 
moderate correlations with the training data. Using the average 
concentration of all the stream-sediment samples collected 
from a single catchment, copper has a strong correlation and 
gold, lead, and sulphur all have moderate correlations. 

Lithogeochemistry samples anomalous in elements (Cu, Pb, 
Zn, Mo, Ni, Co, Cr, S, Au, Ag, PGE) were buffered to 2000 m 
and tested for spatial correlation with the training data (i.e., for 
contrast and studentized contrast value results, see Appendix 
A, BCGS_P2024-02.zip). All the elements tested have weak 
correlations except for zinc, which has a moderate correlation 
but with a low number of training points captured. Six training 
points are in no data areas.

4.2. Volcanogenic massive sulphide spatial correlations
4.2.1. Volcanogenic massive sulphide source

Volcanic and volcaniclastic rocks (including metamorphosed 
equivalents) were tested as potential source rocks for the 
volcanogenic massive sulphide mineral system. A buffer of 700 
m had the best spatial correlation. Mafic volcanic rocks tested 
separately received a strong spatial correlation but captured 
fewer training points. Felsic and mafic volcanic rocks both had 
moderate correlations but also captured a few training points. 
Fine-grained siliciclastic rocks, which can be important hosts, 
had a moderate correlation but extended across a large part of 
the study area.

4.2.2. Volcanogenic massive sulphide transport
The fault maps tested were the same as those used in the 

porphyry model. The best correlations were for all faults 
buffered to 3100 m, minor faults also buffered to 3100 m, north-
trending faults buffered to 3050 m, and northwest-trending 
faults with a 4350 m buffer.

4.2.3. Volcanogenic massive sulphide trap 
Fault point datasets were tested as possible traps. The best 

correlations were for fault intersections (strong correlation 
at a 1650 m buffer) fault splays (strong correlation at a 3250 
m buffer), and fault bends (moderate correlation at a 3450 m 
buffer). High fault intersection density, high fault bend density, 
and high fault splay density all have strong correlations with 
the training data. Gravity maps were classified into ten classes 
using the quantile method. The best correlations were for the 
Bouguer gravity map, with a strong correlation, and the free air 
anomaly map with a moderate correlation.

4.2.4. Volcanogenic massive sulphide deposition
A metallic mineral occurrence density grid was calculated 

and grouped into ten classes. The moderate to high classes 
have a strong spatial correlation with the training data and a 
strong correlation with all classes buffered to 5500 m. Stream 

catchment and lithogeochemistry anomaly maps for elements 
relevant to the mineral system (Cu, Pb, Zn, Au, Ag) were 
tested for spatial correlation with the training data. The copper 
stream catchment map, calculated using the average for each 
catchment, showed a strong correlation. A combined map of 
copper and gold has a slightly weaker correlation. The gold 
anomaly map was the only lithogeochemistry map to show a 
strong correlation. To identify magnetite-destructive alteration 
that may be associated with volcanogenic massive sulphide 
mineralization, mapped faults in zones of low magnetic 
response were selected and buffered. The resulting map has a 
strong spatial correlation with the training data at a 2650 m 
buffer.

4.3. Magmatic mafic to ultramafic sulphide spatial 
correlations
4.3.1. Magmatic mafic to ultramafic sulphide source

A selection of all mafic and ultramafic units gave a strong 
correlation when buffered to 300 m, as did ultramafic units 
separately. Selecting only the intrusive rocks improved the 
spatial correlation significantly and resulted in a very strong 
correlation, both with no buffer and with a 300 m buffer. 
Gravity maps were also tested to identify dense rocks that may 
represent buried or unmapped intrusions. Very similar, strong 
correlations were observed for gravity highs selected from the 
isostatic residual, free air anomaly, and first vertical derivative 
maps. All magnetic maps were tested by classifying the data 
into ten classes using the quantile method. The best correlations 
were for magnetic highs from the residual total field and first 
vertical derivative maps, both receiving high correlation results. 
The magnetic highs likely correspond to mafic-intermediate 
(magnetite-bearing) intrusions and volcanic rocks.

4.3.2. Magmatic mafic to ultramafic sulphide transport
The tested fault maps were the same as those used in the 

porphyry and volcanogenic massive sulphide systems. The best 
correlations are distance from north-trending faults (4200 m 
buffer), minor faults (2700 m buffer), northwest-trending faults 
(4200 m buffer), all faults (2250 m), and distance to medium 
length faults (2900 m buffer).

4.3.3. Magmatic mafic to ultramafic sulphide trap
Fault point datasets were tested as possible traps. The 

best correlations were for distance to fault bends (2300 m 
buffer) and fault splays (5550 m buffer) both receiving strong 
correlations. Corresponding density maps of these features had 
weaker correlations. A density map of all faults was created in 
ArcGIS and has a strong correlation with the training data.

4.3.4. Magmatic mafic to ultramafic sulphide deposition
Stream catchment and lithogeochemistry anomaly maps for 

Cu, Co, Cr, Zn, Ni, S, PGE, Au, and Ag were tested for spatial 
correlation with the training data. The copper and cobalt stream 
catchment maps have strong correlations. A combination 
of these maps was also tested but had a weaker correlation 

http://cmscontent.nrs.gov.bc.ca/geoscience/PublicationCatalogue/Paper/BCGS_P2024-02.zip
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than the individual maps. The strongest correlations for the 
lithogeochemistry data are for cobalt, zinc, and nickel, which 
received moderate correlations.

5. From predictive maps to mineral potential maps
Mineral potential maps are developed using a selection of the 

predictive maps created in the spatial analysis process. When 
separate predictive maps are combined into a final mineral 
potential map, the weights are calculated independently and 
then combined. Numerous predictive map combinations 
may be tested before the final set of maps is chosen. Before 
selecting which predictive maps to integrate, several items 
need to be considered. First, each component of the mineral 
system model (source, transport, and trap) must be represented 
by at least one predictive map. Second, the selected maps 
should have moderate to strong statistical correlations with the 
training data. Third, because informing land-use planning is a 
key goal of the present work, in cases where predictive maps 
had similar contrast values, predictive maps that highlighted 
large areas of mineral potential containing many training 
points were favoured over predictive maps that restricted 
areas to few training points. Fourth, the predictive maps must 
be geologically reasonable with respect to the mineral system 
being modelled. Finally, combining predictive maps assumes 
what is referred to as ‘conditional independence’ in which no 
predictive map is influenced by another. However, because ore-
forming geological processes are commonly interconnected, 
strict independence is rarely realized and the violation of 
conditional independence needs to be minimized. Reducing 
the total number of predictive maps in a final mineral potential 
model and combining similar predictive map patterns using 
Boolean operators (e.g., AND, OR; e.g., combining Zn and Pb 
geochemistry patterns) will reduce the overall violation of the 
conditional independence assumption (Bonham-Carter, 1994).  

The resulting mineral potential maps combine selected 
predictive maps for the porphyry mineral system (Table 5, 
Fig. 7), volcanogenic massive sulphide system (Table 6, Fig. 
8), and magmatic mafic-ultramafic system (Table 7, Fig. 
9). The outputs are posterior probability grids that map the 
geological potential for mineralization for each grid cell in 
the form of posterior probability values that range from 0 to 
1 (Figs. 10-12). To combine all three mineral systems into a 
single map of prospectivity over the study area, the posterior 
probability values were converted into five equal percentile 
ranking divisions. The maximum percentile ranking for each 
of the three mineral system maps in each cell in the study area 
was used as the percentile ranking in the combined mineral 
potential map (Fig. 13).

6. Validation of mineral potential maps
Validation of the base-case models involved creating 

success- and prediction-rate curves using ArcSDM’s area-
frequency tool. In these graphs, either the cumulative captured 
training point data (success rate) or validation data (prediction 
rate) are plotted against the cumulative area from highest to 

lowest prospectivity. The validation data represent a subset 
of mineral occurrences that were not used as training points 
(Fig. 14). For the porphyry and VMS models, validation data 
consisted of all mineral occurrences excluding training points 
that were categorized as developed prospects or prospects from 
MINFILE. We used 112 validation points for the porphyry 
model and 73 for the VMS model. Due to a lack of developed 
prospects and prospects with a mafic-ultramafic association, 
we included showings in the validation dataset, which resulted 
in 108 points. In general, the greater the area under the curve 
(reported as an AUC value), and the steeper the gradient of the 
curve, the better the model is at capturing the training points or 
validation data within the smallest area (e.g., Chung and Fabbri, 
2003; Nykänen et al., 2008). A higher AUC value indicates 
better efficiency classification of the model, with a perfect 
classifier having an AUC of 1.0 and a random classifier having 
an AUC of 0.5. Whereas prediction-rate curves are increasingly 
being used as a standard validation tool for mineral potential 
models, a consistent set of standards for evaluating model 
performance across various studies has yet to be established 
(Ford et al., 2015, Lawley et. al 2021, 2022). Generally, models 
that have AUC > 0.8 are considered good and > 0.9 as excellent. 
This method is a test for how effective the model is at reducing 
the search space for the mineral system considered. 

To ensure the validation data were truly independent from 
the modelling process, base-case models excluded the use of 
predictive maps made from the validation data (i.e. density of 
known deposits was excluded). These base-case models were 
used for validation purposes. However, because some of the 
predictive maps made from mineral occurrence data had strong 
correlations with the training data and were relevant to the 
mineral system, final iterations of the models, referred to as 
conclusive models, included these maps. 

The success-rate curve for the base case mafic-ultramafic 
sulphide model has the highest AUC value of 0.992, and a 
slightly lower predictive-rate AUC value of 0.928 (Fig. 14). 
The base case porphyry model has a success-rate AUC value 
of 0.974 and the lowest predictive rate of all models with an 
AUC value of 0.876 (Fige 14). The VMS base case model has a 
success AUC value of 0.956 and a relatively similar predictive 
AUC value of 0.953. Moreover, the base case volcanogenic 
massive sulphide model captures ~80% of the validation data 
in 5.82% of the study area. The mafic-ultramafic sulphide base 
case model captures ~80% of the validation data in 11.85% of 
study area and the base case porphyry model captures ~80% of 
the validation data in 23.22% of the study area (Fig 14).

To further validate the models, the frequency of validation 
data is tested against ten equal percentile divisions based on 
posterior probability values of the respective mineral system 
(Table 8). The greater the number of validation data captured 
in the higher percentile divisions, the better the model is at 
predicting sites of mineralization for that mineral system, 
regardless of the size of the prospective areas. In general, 
the base-case models for the porphyry and mafic-ultramafic 
mineral systems capture 76% and 84% respectively of the 
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Mineral system 
component Spatial variable Variable ID # TP C StudC 

Source 

Distance to volcanic rocks 2350 m 11 3.0 2.9 

Distance to intermediate and felsic 
intrusive rocks and high total residual 
total field mag areas (inferred 
intrusions) 

Class 9-10 (>160 
nT/m), felsic 
intrusive, 1000 m 

11 4.0 3.8 

Transport 

Distance to all faults 850 m 10 3.0 3.8 

Distance to intermediate and felsic 
intrusive rocks and high total residual 
total field mag contacts 

Class 9-10 (>160 
nT/m), felsic 
intrusive, 1250 m 

12 3.1 2.9 

Trap Fault intersection density 
Class 4-10 
(moderate to high 
density) 

12 2.7 2.6 

Deposition 

Ag stream anomalies Ag > 0.33 ppm 11 2.0 1.9 
Au stream anomalies Au > 0.01 ppm 12 1.9 1.8 
Cu stream anomalies Cu > 106.05 ppm 10 1.9 2.5 
Density of porphyry + HS epithermal 
occurrences + rock chips anomalous 
in Cu or Zn 

Class 4-10 (high 
density) 11 3.56 3.38 

 

Mineral system 
component Spatial variable Variable ID # TP C StudC 

Source 

Distance to prospective 
stratigraphy 300 m 11 3.4 3.3 

Distance to volcanic and 
volcaniclastic rocks (and 
metamorphosed equivalents) 

300 m 9 3.2 4.1 

Transport Distance to minor faults 3100 m 10 3.0 2.8 

Trap Fault intersection density 
Class 5-10 
(moderate to high 
density) 

9 2.2 2.8 

Deposition 

Stream sediment Cu + Au 
anomaly (mean, reclassified) 

(Cu = 106.05, Au = 
0.01) ppm 10 2.5 2.4 

 
Stream sediment Zn+ Pb + Ag 
anomaly (mean, reclassified) 

(Zn = 183.55, Pb = 
18.87, Ag = 0.33) 
ppm  

6 0.9 1.4 

 
Density of VMS occs  - update + 
Zn, Pb, Ag rock  chip anomalies 

Class 6-10 (high 
density) 10 4.6 4.3 

 
Mineral system 
component Spatial variable Variable ID # TP C StudC 

Source Distance to ultramafic or 
mafic intrusive rocks 300 m 6 5.0 6.1 

Transport Distance to minor faults 2700 m 7 2.8 2.6 

Trap 

Magnetics 1st vertical 
derivative 

Class 8 – 10 (>0.0085 
nT/m) 7 3.0 2.8 

Fault density Class 7-10 (high 
density) 8 2.4 2.2 

Deposition 

Gravity isostatic residual Class 7 – 10 (>9.50 
mGal) 7 2.4 2.2 

Stream sediment Co 
anomaly 33.05 ppm 7 2.4 2.2 

Density of UM/M intrusive 
mineral occurrences + rock 
chips anomalous in Ni or 
Co or Zn 

Class 5-10 (high 
density) 7 3.9 3.6 

Table 5. Statistical spatial analysis results for predictive maps used in the porphyry model.

Table 6. Statistical spatial analysis results for predictive maps used in the volcanogenic massive sulphide model.

Table 7. Statistical spatial analysis results for predictive maps used in the magmatic mafic-ultramafic model.



16

Wearmouth, Czertowicz, Peters, Orovan

British Columbia Geological Survey Paper 2024-02

Training Points
1
2

Training Points
1
2
-99

Distance to intrusive contacts

Distance to volcanic rocks

Training Points
1
2

Distance to faults

Fault intersection density

Ag stream anomalies Au stream anomalies

Cu stream anomalies

Training Points
1
2

Training Points
1
2

Training Points
1
2

Training Points
1
2
-99

Training Points
1
2
-99

0 50 100 150
km

0 50 100 150
km

0 50 100 150
km

0 50 100 150
km

0 50 100 150
km

0 50 100 150
km

0 50 100 150
km

0 50 100 150
km

Distance to intermediate-felsic intrusions

Density of porphyry + HS epithermal occurrences
 and anomalous rockchips (Cu, Zn)

0 50 100 150
km

Training Points
1
2

Fig. 7. Predictive maps used in the porphyry model. 
Red indicates areas that are favourable for capturing 
training data, blue are areas that are less favourable, 
and grey (-99 in the legend) areas indicate data 
gaps.
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Fig. 8. Predictive maps used in the volcanogenic massive sulphide 
model. Red indicates areas that are favourable for capturing 
training data, blue are areas that are less favourable, and grey (-99 
in the legend) areas indicate data gaps.
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at capturing training data, blue (2 in the legend) is less favourable, and grey (-99 in the legend) areas indicate data gaps.
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Fig. 14. Cumulative frequency plots for both success (training points 
vs cumulative area; solid lines) and predictive plots (validation data 
vs cumulative area; dashed lines) of base case models and conclusive 
models. a) Porphyry, b) Volcanogenic massive sulphide. c) Magmatic 
mafic-ultramafic. The greater the area under the curve, the better the 
model is at capturing the training point or validation data within a 
small area. 

Table 8. Distribution of validation data for each mineral system within each tenth percentile division.

Hierarchy Percentile 
Porphyry  VMS Magmatic mafic-

ultramafic 

Base Conclusive Base Conclusive Base Conclusive 

Highest 100-90 55.4% 72.3% 85.3% 95.9% 54.8% 73.2% 
90-80 17.9% 2.7% 1.3% 0.0% 19.2% 8.5% 

High to moderate 80-70 2.7% 8.9% 0.0% 0.0% 6.8% 4.2% 
70-60 0.0% 4.5% 12.0% 0.0% 2.7% 1.4% 

Moderate 60-50 8.9% 6.3% 0.0% 1.4% 1.4% 0.0% 
50-40 3.6% 0.0% 0.0% 1.4% 1.4% 5.6% 

Moderate to low 40-30 8.9% 0.0% 1.3% 0.0% 0.0% 0.0% 
30-20 0.0% 2.7% 0.0% 1.4% 8.2% 0.0% 

Lowest 20-10 0.9% 2.7% 0.0% 0.0% 2.7% 2.8% 
10-0 1.8% 0.0% 0.0% 0.0% 2.7% 4.2% 

  n = 112 n = 73 n = 108 
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validation data in the top 70th percentile and the volcanogenic 
mineral system captures 87% of the validation data in the top 
70th percentile. These three models capture similar amounts 
of validation data (between 90 and 99% of the validation 
data) within the 50-40th percentile. As expected, including 
the use of the validation data in the form of predictive maps 
for the conclusive models increased the number of validation 
data points captured in the highest percentile divisions. The 
conclusive porphyry and magmatic mafic-ultramafic model 
captured 72.3% and 73.2% of the validation data in the top 90th 
percentile division, while the VMS conclusive model captured 
95.9% of the validation data in the 90th percentile.

7. Discussion
Although the techniques in this mineral potential modeling 

assessment are referred to as being data driven, an element 
of expert biases is present throughout the workflow, as is the 
case for many mineral potential models. Additionally, different 
modelling objectives (e.g., drill hole targeting vs land us 
planning) can affect the decision-making process throughout 
the workflow resulting in different outcomes. However, with 
the workflow and predictive maps documenting the modelling 
process, and when made freely available, different valid models 
can be produced using different combinations of predicative 
maps to fit the needs of additional users with different objectives 
in mind. 

Commonly, the goal of published mineral potential models 
is to reduce the exploration search space to a minimum and 
therefore increase the likelihood of discovering a mineral 
deposit (e.g., Harris and Sanborn-Barrie, 2006; Ford et al. 
2015; Lawley et al., 2021, 2022; Nykanen et al., 2023). One 
objective of this modelling project was to quantitively produce 
an easily understandable and consumable ranking of mineral 
potential. Although search area reduction was still an important 
consideration, and achieved at a regional scale, the objective of 
the modelling was to also identify areas of moderate and low 
mineral potential. Still, the conclusive models presented here 
can delineate areas of high mineral potential by reclassifying the 
conclusive mineral potential models, which may then identify 
areas of focus for detailed exploration. Here, we compare the 
results of the three mineral systems relative to one another from 
within the same study area.

The base-case VMS model was the most efficient at capturing 
the validation data points in the least amount of area (AUC = 
0.953). Interestingly this base-case VMS model had a similar 
AUC value for the training data (AUC = 0.956), which may 
suggest that the training points and predictive maps used in the 
VMS model accurately represent VMS mineral occurrences 
in the region. The base-case mafic-ultramafic sulfide model 
is extremely efficient in predicting the training data (AUC of 
0.992), but slightly less efficient at predicting the validation data 
(AUC of 0.928). This is similar to the base-case porphyry model 
that had a success rate AUC value of 0.974 and a predictive 
AUC value of 0.876. This amount of variation may likely be 
due to sub-types of mineral systems within the validation data. 

Sub-types of mineral systems have greater variability regarding 
the mineral system components (source, transport, and trap) 
that make up the mineral system. If the variability is great 
enough in the validation data compared the training data, it can 
be problematic to predict the location of the sub-type mineral 
systems because the models are trained to predict the location of 
mineral systems akin to the training data. This was a particular 
concern at the onset of the modelling project, yet all models 
performed well with AUC values >0.876. This may suggest the 
predictive maps used in the models accurately capture potential 
sub-type mineral systems within the study area. Additionally, 
the base-case models for both the porphyry and magmatic 
mafic-ultramafic mineral systems have similar AUC scores of 
0.876 and 0.928 suggesting that both models have a similar 
ability to predict the location of known mineralization in the 
study area. However, the predictive curves suggest the study 
area is most prospective for porphyries by area.

8. Limitations and uncertainties
The mineral potential modelling comes with several caveats. 

First, the final maps represent the relative ranking of cells 
rather than an absolute measure of the probability of finding 
a deposit (Bonham-Carter et al., 1990; Bonham-Carter, 1994; 
Ford et al., 2019). This is because conditional independence 
is violated in all three models and the posterior probabilities 
are likely overestimated. Second, mineral potential evaluations 
have uncertainties related to data availability, data quality, 
the level of correlation between mineral occurrences and the 
input data, the estimation method, and the deposit model that 
are partially cumulative and difficult to adequately address 
(e.g., Harmel et al., 2006). Because of these uncertainties, the 
potential assessments cannot be used to indicate the size or 
economics of a potential mineral deposit and cannot be used 
to make valuations on any resource. Third, any modelling is 
limited by the data available at any given time and thus the 
results represent a time-specific evaluation (Ford et al., 2019). 
For example, areas with a very low mineral potential ranking 
may merely reflect a paucity of data. In addition, the MINFILE 
database may not be entirely comprehensive because older 
records continue to be revised and some critical minerals 
are likely underreported because they were not historically 
considered by the exploration community or because past 
analytical technology may have been inadequate to test for 
some elements. Future iterations may consider additional 
datasets or advancements in mineral system research, which 
may affect the results. Fourth, the prospectivity thresholds 
rankings purposed here, ‘lowest, low to moderate, moderate, 
moderate to high, and highest’ are based on five percentile 
divisions of the posterior probabilities for the mineral potential 
models. Importantly, the use of percentiles to arbitrarily define 
prospectivity thresholds is one of many methods (e.g., natural 
breaks, equal area binning, and custom binning) that can be 
used to define thresholds of prospectivity. Therefore, using 
another method to define prospectivity thresholds may not 
lead to the same conclusions derived in this study. Finally, 
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the current maps only consider three mineral systems, and 
the relative prospectivity portrayed on the combined mineral 
potential map (Fig. 13) may change markedly as additional 
mineral systems are considered.

9. Conclusions
The methods presented herein demonstrate how mineral 

systems can be modelled across broad areas of British 
Columbia to produce mineral potential maps that update work 
done in the 1990s. The approach we use translates the key 
ore-forming components of porphyry, volcanogenic massive 
sulphide, and magmatic mafic-ultramafic sulphide mineral 
systems into mappable proxies that can be tested with spatial 
statistics using training data and the data-driven weights of 
evidence technique. Future work could consider other mineral 
systems (e.g., epithermal deposits) and could employ different 
modelling techniques such as fuzzy logic or random forests 
and, in areas with extensive data, advanced AI systems. This 
new mineral potential modelling will be one of many pieces 
of information that will be help guide land-use decisions. As 
society places more value on the transition to a low-carbon 
future, demand for minerals important for energy generation, 
storage, and transmission will increase. The new modelling 
will aid in the search for ‘traditional’ primary critical elements 
such as copper, but also for companion critical elements which, 
occurring in small amounts, were previously overlooked or 
considered uneconomic. 
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